Properties

Label 8-3648e4-1.1-c1e4-0-3
Degree $8$
Conductor $1.771\times 10^{14}$
Sign $1$
Analytic cond. $719992.$
Root an. cond. $5.39716$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 2·5-s + 10·9-s − 8·15-s + 10·17-s − 16·19-s − 25-s − 20·27-s + 12·31-s + 20·45-s + 21·49-s − 40·51-s + 64·57-s + 16·59-s − 10·61-s − 8·67-s − 16·71-s + 18·73-s + 4·75-s − 4·79-s + 35·81-s + 20·85-s − 48·93-s − 32·95-s + 36·101-s − 28·103-s + 8·107-s + ⋯
L(s)  = 1  − 2.30·3-s + 0.894·5-s + 10/3·9-s − 2.06·15-s + 2.42·17-s − 3.67·19-s − 1/5·25-s − 3.84·27-s + 2.15·31-s + 2.98·45-s + 3·49-s − 5.60·51-s + 8.47·57-s + 2.08·59-s − 1.28·61-s − 0.977·67-s − 1.89·71-s + 2.10·73-s + 0.461·75-s − 0.450·79-s + 35/9·81-s + 2.16·85-s − 4.97·93-s − 3.28·95-s + 3.58·101-s − 2.75·103-s + 0.773·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{4} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{4} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(719992.\)
Root analytic conductor: \(5.39716\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{4} \cdot 19^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.895370797\)
\(L(\frac12)\) \(\approx\) \(2.895370797\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{4} \)
19$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
good5$D_{4}$ \( ( 1 - T + 2 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
7$D_4\times C_2$ \( 1 - 3 p T^{2} + 200 T^{4} - 3 p^{3} T^{6} + p^{4} T^{8} \)
11$D_4\times C_2$ \( 1 - 37 T^{2} + 576 T^{4} - 37 p^{2} T^{6} + p^{4} T^{8} \)
13$D_4\times C_2$ \( 1 - 24 T^{2} + 350 T^{4} - 24 p^{2} T^{6} + p^{4} T^{8} \)
17$D_{4}$ \( ( 1 - 5 T + 32 T^{2} - 5 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - 16 T^{2} - 66 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 4 T^{2} - 426 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 - 6 T + 38 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 120 T^{2} + 6206 T^{4} - 120 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 85 T^{2} + 3648 T^{4} - 85 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 169 T^{2} + 11484 T^{4} - 169 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 100 T^{2} + 6006 T^{4} - 100 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
61$D_{4}$ \( ( 1 + 5 T + 120 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 + 4 T + 6 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
73$D_{4}$ \( ( 1 - 9 T + 92 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
79$D_{4}$ \( ( 1 + 2 T + 126 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 154 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.06192087274228902801985120585, −5.86863286485460344604228139262, −5.63496159089670454858487777701, −5.53138354181609709283848671363, −5.44190516491237406829524029159, −5.13716559796510178774713217236, −4.80014771447471940370307214340, −4.60777882992524230117807493876, −4.58584482033290902410095045860, −4.24376562135573241620136209342, −4.11401816176568410977028216705, −3.96764876536958267130292578021, −3.79487663212530819106619672532, −3.31192593420858052323894264772, −3.00108542774397664678244841986, −2.87368551646971438685952505441, −2.76740086842857847388025583367, −2.05777015518477270953930011399, −1.92152701358001627327760603063, −1.92060744259310102309015794400, −1.78948282612848675309691070043, −1.02553839776104416761535986845, −0.865714006245449104706532923834, −0.64346358949394989925940538632, −0.41669240776022289053565060875, 0.41669240776022289053565060875, 0.64346358949394989925940538632, 0.865714006245449104706532923834, 1.02553839776104416761535986845, 1.78948282612848675309691070043, 1.92060744259310102309015794400, 1.92152701358001627327760603063, 2.05777015518477270953930011399, 2.76740086842857847388025583367, 2.87368551646971438685952505441, 3.00108542774397664678244841986, 3.31192593420858052323894264772, 3.79487663212530819106619672532, 3.96764876536958267130292578021, 4.11401816176568410977028216705, 4.24376562135573241620136209342, 4.58584482033290902410095045860, 4.60777882992524230117807493876, 4.80014771447471940370307214340, 5.13716559796510178774713217236, 5.44190516491237406829524029159, 5.53138354181609709283848671363, 5.63496159089670454858487777701, 5.86863286485460344604228139262, 6.06192087274228902801985120585

Graph of the $Z$-function along the critical line