Properties

Degree $2$
Conductor $3630$
Sign $1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s + 3·7-s − 8-s + 9-s − 10-s + 12-s + 5·13-s − 3·14-s + 15-s + 16-s + 7·17-s − 18-s + 7·19-s + 20-s + 3·21-s − 24-s + 25-s − 5·26-s + 27-s + 3·28-s − 7·29-s − 30-s + 6·31-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 1.13·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.288·12-s + 1.38·13-s − 0.801·14-s + 0.258·15-s + 1/4·16-s + 1.69·17-s − 0.235·18-s + 1.60·19-s + 0.223·20-s + 0.654·21-s − 0.204·24-s + 1/5·25-s − 0.980·26-s + 0.192·27-s + 0.566·28-s − 1.29·29-s − 0.182·30-s + 1.07·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3630\)    =    \(2 \cdot 3 \cdot 5 \cdot 11^{2}\)
Sign: $1$
Motivic weight: \(1\)
Character: $\chi_{3630} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3630,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.615458865\)
\(L(\frac12)\) \(\approx\) \(2.615458865\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
11 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 5 T + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
19 \( 1 - 7 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 7 T + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + 10 T + p T^{2} \)
53 \( 1 + 12 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 12 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 9 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 13 T + p T^{2} \)
89 \( 1 - 4 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.447756770228291251105623799986, −7.86708540943814559053363429939, −7.48889842910459192601994958462, −6.34964582335915713836067434463, −5.60993166683938271984093021828, −4.85944559305045742099025345093, −3.59793917567907753132968632863, −2.98399993717107095058766737944, −1.59388859600272842161552282342, −1.24510794557034026712657627305, 1.24510794557034026712657627305, 1.59388859600272842161552282342, 2.98399993717107095058766737944, 3.59793917567907753132968632863, 4.85944559305045742099025345093, 5.60993166683938271984093021828, 6.34964582335915713836067434463, 7.48889842910459192601994958462, 7.86708540943814559053363429939, 8.447756770228291251105623799986

Graph of the $Z$-function along the critical line