| L(s) = 1 | + (−0.439 + 0.761i)2-s + (−0.266 + 0.460i)3-s + (0.613 + 1.06i)4-s + (1.26 − 2.19i)5-s + (−0.233 − 0.405i)6-s − 1.87·7-s − 2.83·8-s + (1.35 + 2.35i)9-s + (1.11 + 1.92i)10-s + 3.41·11-s − 0.652·12-s + (2.64 + 4.58i)13-s + (0.826 − 1.43i)14-s + (0.673 + 1.16i)15-s + (0.0209 − 0.0362i)16-s + (−0.826 + 1.43i)17-s + ⋯ |
| L(s) = 1 | + (−0.310 + 0.538i)2-s + (−0.153 + 0.266i)3-s + (0.306 + 0.531i)4-s + (0.566 − 0.980i)5-s + (−0.0955 − 0.165i)6-s − 0.710·7-s − 1.00·8-s + (0.452 + 0.784i)9-s + (0.352 + 0.609i)10-s + 1.02·11-s − 0.188·12-s + (0.733 + 1.27i)13-s + (0.220 − 0.382i)14-s + (0.173 + 0.301i)15-s + (0.00523 − 0.00906i)16-s + (−0.200 + 0.347i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 361 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0238 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0238 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.867512 + 0.888426i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.867512 + 0.888426i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 19 | \( 1 \) |
| good | 2 | \( 1 + (0.439 - 0.761i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.266 - 0.460i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.26 + 2.19i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 1.87T + 7T^{2} \) |
| 11 | \( 1 - 3.41T + 11T^{2} \) |
| 13 | \( 1 + (-2.64 - 4.58i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.826 - 1.43i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (0.879 + 1.52i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.73 - 3.00i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 1.94T + 31T^{2} \) |
| 37 | \( 1 + 0.837T + 37T^{2} \) |
| 41 | \( 1 + (-2.24 + 3.88i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.40 - 4.15i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.358 + 0.620i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.05 - 5.28i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.37 + 9.31i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.19 + 3.80i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.10 + 12.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.87 + 11.9i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.75 + 6.51i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.48 + 6.03i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 2.51T + 83T^{2} \) |
| 89 | \( 1 + (-1.14 - 1.97i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.911 + 1.57i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.75960925950120252470729995110, −10.71464513816355226873819830769, −9.391792638759287452851739937861, −9.045833545195856472431384507115, −8.026065220952399492889588669947, −6.74317185569851532034915223260, −6.18166093914630067042616348577, −4.76688995845233362455981196489, −3.66717510290389246287173959939, −1.80354922196562680540283447645,
1.05239814183596614313126055052, 2.64752170959967492202754172550, 3.66739364071625099927607414518, 5.77375899010801672511440655986, 6.39496911651502962671329926798, 7.04510502561837647637780630029, 8.709092244688954381543470664573, 9.825142023515569722617554509831, 10.09305714140482050174860394896, 11.15482326879908159655832704687