Properties

Label 8-60e8-1.1-c2e4-0-23
Degree $8$
Conductor $1.680\times 10^{14}$
Sign $1$
Analytic cond. $9.25870\times 10^{7}$
Root an. cond. $9.90418$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 48·19-s + 152·31-s − 104·49-s − 280·61-s + 120·79-s − 296·109-s + 288·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 152·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯
L(s)  = 1  + 2.52·19-s + 4.90·31-s − 2.12·49-s − 4.59·61-s + 1.51·79-s − 2.71·109-s + 2.38·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 0.899·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + 0.00473·211-s + 0.00448·223-s + 0.00440·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(9.25870\times 10^{7}\)
Root analytic conductor: \(9.90418\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 5^{8} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(9.047891706\)
\(L(\frac12)\) \(\approx\) \(9.047891706\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( ( 1 + 52 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 144 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 76 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 210 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 12 T + p^{2} T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 42 p T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 1610 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 38 T + p^{2} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + 2692 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 1440 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 902 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 1470 T^{2} + p^{4} T^{4} )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
59$C_2^2$ \( ( 1 + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 70 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 2798 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 4030 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 10474 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 30 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 4254 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 14784 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 9802 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.05120399470625085635995113217, −5.64286915212832623973115177342, −5.28985344038386501694150649259, −5.22432894846562201183827789812, −5.20950698049703792464523122467, −4.83760966741955014028638208182, −4.52082221631845144632464170203, −4.49995855439480514726950041527, −4.48577917544116495308703653563, −4.06642463558453882537728383312, −3.82457764040428256666741174196, −3.51836289982596967452324126362, −3.31214836313024975437119514023, −2.94057182174775817946711839736, −2.93340601434532563561087666797, −2.80690102766861581351560880229, −2.75903552614264706230778618454, −2.21581544820964905479859790059, −1.76123179039136451161783926023, −1.63156708963366023571402211044, −1.47155557383070521239838784766, −1.12978006936586634143363347982, −0.70041212499084396180832474200, −0.65733936061242947546149205661, −0.33985099148076055497670750003, 0.33985099148076055497670750003, 0.65733936061242947546149205661, 0.70041212499084396180832474200, 1.12978006936586634143363347982, 1.47155557383070521239838784766, 1.63156708963366023571402211044, 1.76123179039136451161783926023, 2.21581544820964905479859790059, 2.75903552614264706230778618454, 2.80690102766861581351560880229, 2.93340601434532563561087666797, 2.94057182174775817946711839736, 3.31214836313024975437119514023, 3.51836289982596967452324126362, 3.82457764040428256666741174196, 4.06642463558453882537728383312, 4.48577917544116495308703653563, 4.49995855439480514726950041527, 4.52082221631845144632464170203, 4.83760966741955014028638208182, 5.20950698049703792464523122467, 5.22432894846562201183827789812, 5.28985344038386501694150649259, 5.64286915212832623973115177342, 6.05120399470625085635995113217

Graph of the $Z$-function along the critical line