Properties

Label 16-60e16-1.1-c1e8-0-0
Degree $16$
Conductor $2.821\times 10^{28}$
Sign $1$
Analytic cond. $4.66269\times 10^{11}$
Root an. cond. $5.36154$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·31-s − 56·61-s + 16·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + 233-s + 239-s + 241-s + 251-s + ⋯
L(s)  = 1  − 1.43·31-s − 7.17·61-s + 1.45·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + 0.0660·229-s + 0.0655·233-s + 0.0646·239-s + 0.0644·241-s + 0.0631·251-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{16} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{16} \cdot 5^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{32} \cdot 3^{16} \cdot 5^{16}\)
Sign: $1$
Analytic conductor: \(4.66269\times 10^{11}\)
Root analytic conductor: \(5.36154\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{32} \cdot 3^{16} \cdot 5^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.009762727785\)
\(L(\frac12)\) \(\approx\) \(0.009762727785\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( ( 1 + 23 T^{4} + p^{4} T^{8} )^{2} \)
11 \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{4} \)
13 \( ( 1 - 337 T^{4} + p^{4} T^{8} )^{2} \)
17 \( ( 1 + 206 T^{4} + p^{4} T^{8} )^{2} \)
19 \( ( 1 - 13 T^{2} + p^{2} T^{4} )^{4} \)
23 \( ( 1 + 542 T^{4} + p^{4} T^{8} )^{2} \)
29 \( ( 1 + 40 T^{2} + p^{2} T^{4} )^{4} \)
31 \( ( 1 + T + p T^{2} )^{8} \)
37 \( ( 1 + 1106 T^{4} + p^{4} T^{8} )^{2} \)
41 \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{4} \)
43 \( ( 1 + 3191 T^{4} + p^{4} T^{8} )^{2} \)
47 \( ( 1 - 2818 T^{4} + p^{4} T^{8} )^{2} \)
53 \( ( 1 - 5518 T^{4} + p^{4} T^{8} )^{2} \)
59 \( ( 1 - 44 T^{2} + p^{2} T^{4} )^{4} \)
61 \( ( 1 + 7 T + p T^{2} )^{8} \)
67 \( ( 1 + 2471 T^{4} + p^{4} T^{8} )^{2} \)
71 \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{4} \)
73 \( ( 1 + 7298 T^{4} + p^{4} T^{8} )^{2} \)
79 \( ( 1 - 154 T^{2} + p^{2} T^{4} )^{4} \)
83 \( ( 1 + 11822 T^{4} + p^{4} T^{8} )^{2} \)
89 \( ( 1 + 106 T^{2} + p^{2} T^{4} )^{4} \)
97 \( ( 1 - 16609 T^{4} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.49014574080605191416102204361, −3.45954302306274973803897772413, −3.28447363031352732101139602363, −3.21344631506859489464536598237, −3.07558765993966612196336496705, −2.94292795333945612394149840574, −2.83040695455142206453226635162, −2.62536474830643191962765503279, −2.56908557195509899418616543068, −2.56466152726544929201166502995, −2.56152219494541457428512649476, −2.04891307316205908245486351561, −2.03434313028357132343124398147, −1.88610740943763290888904766175, −1.80677839617563531066721894198, −1.67993914202337495858294490719, −1.64638992772055749020819110480, −1.44740064273814247445980590420, −1.23206700267576099070560714358, −1.04928644689427286756683753151, −0.944650187849310353576273854521, −0.874781380476969319450207383157, −0.41770995523511804752814332521, −0.26549009970040889200333098656, −0.01159600796646830542793910022, 0.01159600796646830542793910022, 0.26549009970040889200333098656, 0.41770995523511804752814332521, 0.874781380476969319450207383157, 0.944650187849310353576273854521, 1.04928644689427286756683753151, 1.23206700267576099070560714358, 1.44740064273814247445980590420, 1.64638992772055749020819110480, 1.67993914202337495858294490719, 1.80677839617563531066721894198, 1.88610740943763290888904766175, 2.03434313028357132343124398147, 2.04891307316205908245486351561, 2.56152219494541457428512649476, 2.56466152726544929201166502995, 2.56908557195509899418616543068, 2.62536474830643191962765503279, 2.83040695455142206453226635162, 2.94292795333945612394149840574, 3.07558765993966612196336496705, 3.21344631506859489464536598237, 3.28447363031352732101139602363, 3.45954302306274973803897772413, 3.49014574080605191416102204361

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.