Properties

Label 4-60e4-1.1-c1e2-0-24
Degree $4$
Conductor $12960000$
Sign $1$
Analytic cond. $826.340$
Root an. cond. $5.36154$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·11-s − 10·19-s + 20·29-s + 6·31-s + 16·41-s + 5·49-s + 20·59-s + 14·61-s − 16·71-s − 24·101-s − 10·109-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 25·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 1.20·11-s − 2.29·19-s + 3.71·29-s + 1.07·31-s + 2.49·41-s + 5/7·49-s + 2.60·59-s + 1.79·61-s − 1.89·71-s − 2.38·101-s − 0.957·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.92·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12960000\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(826.340\)
Root analytic conductor: \(5.36154\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12960000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.634089348\)
\(L(\frac12)\) \(\approx\) \(3.634089348\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 14 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 125 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 95 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.510207643854788456513406531326, −8.457189917590419148981404775732, −8.190273255472999823568622119857, −7.75728981447324310512869143578, −6.93293316396133459635276734796, −6.91688036260201372110304281150, −6.44051054470360246201953084979, −6.41229401047564575705178209281, −5.67703057570696635477832237119, −5.54197284861683970724801721398, −4.76930070963763838901387465898, −4.34905375740304426911335785130, −4.09325649730811148522801939385, −4.09179695764320897983563816891, −3.01440658992017247458849886765, −2.80907327913162999350199238449, −2.32283747100326917277925455106, −1.80180902406788749030214493980, −0.883639595464901708145119393493, −0.77438724675417013692147743685, 0.77438724675417013692147743685, 0.883639595464901708145119393493, 1.80180902406788749030214493980, 2.32283747100326917277925455106, 2.80907327913162999350199238449, 3.01440658992017247458849886765, 4.09179695764320897983563816891, 4.09325649730811148522801939385, 4.34905375740304426911335785130, 4.76930070963763838901387465898, 5.54197284861683970724801721398, 5.67703057570696635477832237119, 6.41229401047564575705178209281, 6.44051054470360246201953084979, 6.91688036260201372110304281150, 6.93293316396133459635276734796, 7.75728981447324310512869143578, 8.190273255472999823568622119857, 8.457189917590419148981404775732, 8.510207643854788456513406531326

Graph of the $Z$-function along the critical line