L(s) = 1 | − 8·11-s − 8·19-s − 4·29-s + 16·31-s + 12·41-s + 14·49-s − 24·59-s + 28·61-s + 16·71-s − 16·79-s + 20·89-s − 12·101-s + 36·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + 179-s + 181-s + ⋯ |
L(s) = 1 | − 2.41·11-s − 1.83·19-s − 0.742·29-s + 2.87·31-s + 1.87·41-s + 2·49-s − 3.12·59-s + 3.58·61-s + 1.89·71-s − 1.80·79-s + 2.11·89-s − 1.19·101-s + 3.44·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.552543499\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.552543499\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.546914401518107204058978036954, −8.301108504865396915362581905499, −8.141260748405405423643749122721, −7.57694521132852757032869702172, −7.40295750780192372897750411817, −6.99634290600883530296573979046, −6.28176010398922427641314122390, −6.19701608648906102378272823166, −5.83626622806603151858225137821, −5.27850768104958722113804489999, −4.90529113699697236846665615401, −4.66299721486102806706325159265, −4.08953771212554761910014870521, −3.83782041939156324691646444102, −3.03701392698589328992365024720, −2.64794761222461551270902274564, −2.35982320578521408068811531528, −2.02409094623636756180326573389, −0.960396513874823235630431002852, −0.43233629985980295369211591990,
0.43233629985980295369211591990, 0.960396513874823235630431002852, 2.02409094623636756180326573389, 2.35982320578521408068811531528, 2.64794761222461551270902274564, 3.03701392698589328992365024720, 3.83782041939156324691646444102, 4.08953771212554761910014870521, 4.66299721486102806706325159265, 4.90529113699697236846665615401, 5.27850768104958722113804489999, 5.83626622806603151858225137821, 6.19701608648906102378272823166, 6.28176010398922427641314122390, 6.99634290600883530296573979046, 7.40295750780192372897750411817, 7.57694521132852757032869702172, 8.141260748405405423643749122721, 8.301108504865396915362581905499, 8.546914401518107204058978036954