Properties

Label 4-60e4-1.1-c1e2-0-12
Degree $4$
Conductor $12960000$
Sign $1$
Analytic cond. $826.340$
Root an. cond. $5.36154$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·11-s − 8·19-s − 4·29-s + 16·31-s + 12·41-s + 14·49-s − 24·59-s + 28·61-s + 16·71-s − 16·79-s + 20·89-s − 12·101-s + 36·109-s + 26·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 10·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 2.41·11-s − 1.83·19-s − 0.742·29-s + 2.87·31-s + 1.87·41-s + 2·49-s − 3.12·59-s + 3.58·61-s + 1.89·71-s − 1.80·79-s + 2.11·89-s − 1.19·101-s + 3.44·109-s + 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(12960000\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(826.340\)
Root analytic conductor: \(5.36154\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 12960000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.552543499\)
\(L(\frac12)\) \(\approx\) \(1.552543499\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2$ \( ( 1 - p T^{2} )^{2} \) 2.7.a_ao
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.11.i_bm
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.13.a_k
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \) 2.17.a_c
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.19.i_cc
23$C_2$ \( ( 1 - p T^{2} )^{2} \) 2.23.a_abu
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.29.e_ck
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.31.aq_ew
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.37.a_acs
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.41.am_eo
43$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \) 2.43.a_cg
47$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \) 2.47.a_abe
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \) 2.53.a_acs
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \) 2.59.y_kc
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \) 2.61.abc_mg
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \) 2.67.a_aeo
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.71.aq_hy
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \) 2.73.a_aeg
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \) 2.79.q_io
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \) 2.83.a_aw
89$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \) 2.89.au_ks
97$C_2^2$ \( 1 - 190 T^{2} + p^{2} T^{4} \) 2.97.a_ahi
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.546914401518107204058978036954, −8.301108504865396915362581905499, −8.141260748405405423643749122721, −7.57694521132852757032869702172, −7.40295750780192372897750411817, −6.99634290600883530296573979046, −6.28176010398922427641314122390, −6.19701608648906102378272823166, −5.83626622806603151858225137821, −5.27850768104958722113804489999, −4.90529113699697236846665615401, −4.66299721486102806706325159265, −4.08953771212554761910014870521, −3.83782041939156324691646444102, −3.03701392698589328992365024720, −2.64794761222461551270902274564, −2.35982320578521408068811531528, −2.02409094623636756180326573389, −0.960396513874823235630431002852, −0.43233629985980295369211591990, 0.43233629985980295369211591990, 0.960396513874823235630431002852, 2.02409094623636756180326573389, 2.35982320578521408068811531528, 2.64794761222461551270902274564, 3.03701392698589328992365024720, 3.83782041939156324691646444102, 4.08953771212554761910014870521, 4.66299721486102806706325159265, 4.90529113699697236846665615401, 5.27850768104958722113804489999, 5.83626622806603151858225137821, 6.19701608648906102378272823166, 6.28176010398922427641314122390, 6.99634290600883530296573979046, 7.40295750780192372897750411817, 7.57694521132852757032869702172, 8.141260748405405423643749122721, 8.301108504865396915362581905499, 8.546914401518107204058978036954

Graph of the $Z$-function along the critical line