Properties

Degree $2$
Conductor $3600$
Sign $0.173 - 0.984i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)3-s + (−1.5 − 0.866i)7-s + (−0.499 + 0.866i)9-s + 1.73i·21-s + (−1.5 + 0.866i)23-s + 0.999·27-s + (−0.5 + 0.866i)29-s + (−0.5 − 0.866i)41-s + (1.5 + 0.866i)47-s + (1 + 1.73i)49-s + (−0.5 + 0.866i)61-s + (1.49 − 0.866i)63-s + (−1.5 + 0.866i)67-s + (1.5 + 0.866i)69-s + (−0.5 − 0.866i)81-s + ⋯
L(s)  = 1  + (−0.5 − 0.866i)3-s + (−1.5 − 0.866i)7-s + (−0.499 + 0.866i)9-s + 1.73i·21-s + (−1.5 + 0.866i)23-s + 0.999·27-s + (−0.5 + 0.866i)29-s + (−0.5 − 0.866i)41-s + (1.5 + 0.866i)47-s + (1 + 1.73i)49-s + (−0.5 + 0.866i)61-s + (1.49 − 0.866i)63-s + (−1.5 + 0.866i)67-s + (1.5 + 0.866i)69-s + (−0.5 − 0.866i)81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3600\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.173 - 0.984i$
Motivic weight: \(0\)
Character: $\chi_{3600} (1951, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3600,\ (\ :0),\ 0.173 - 0.984i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.2727113324\)
\(L(\frac12)\) \(\approx\) \(0.2727113324\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.5 + 0.866i)T \)
5 \( 1 \)
good7 \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \)
11 \( 1 + (0.5 + 0.866i)T^{2} \)
13 \( 1 + (-0.5 + 0.866i)T^{2} \)
17 \( 1 + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \)
29 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
31 \( 1 + (0.5 - 0.866i)T^{2} \)
37 \( 1 + T^{2} \)
41 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
43 \( 1 + (0.5 + 0.866i)T^{2} \)
47 \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \)
53 \( 1 + T^{2} \)
59 \( 1 + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
67 \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + T^{2} \)
79 \( 1 + (0.5 + 0.866i)T^{2} \)
83 \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \)
89 \( 1 - T + T^{2} \)
97 \( 1 + (-0.5 - 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.950471305527200165913420314449, −7.84801008363821895872030989119, −7.35014736276083701131312028986, −6.69321995569481288978389517780, −6.04059374890192725873992573803, −5.40602217646731782991194303894, −4.16922672851381335766982729892, −3.43693181128580221651685283601, −2.41442422883984642557358974120, −1.20214410967519935251523772018, 0.17670312809240730142134776671, 2.24532460033465538263627394744, 3.16050658357450261029861473460, 3.89103169893303500081729982636, 4.73977578504509466980451232513, 5.80180359799048099296536788634, 6.09038764979851478767533676633, 6.80518579417157308514338345250, 7.950821820276303306155377821785, 8.830543883062758526579946750916

Graph of the $Z$-function along the critical line