# Properties

 Degree $2$ Conductor $3600$ Sign $0.998 + 0.0618i$ Motivic weight $0$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−1 − i)13-s + (1.41 + 1.41i)17-s + 1.41·29-s + (1 − i)37-s + 1.41i·41-s − i·49-s + (1.41 − 1.41i)53-s + (1 + i)73-s − 1.41·89-s + (1 − i)97-s + 1.41i·101-s + ⋯
 L(s)  = 1 + (−1 − i)13-s + (1.41 + 1.41i)17-s + 1.41·29-s + (1 − i)37-s + 1.41i·41-s − i·49-s + (1.41 − 1.41i)53-s + (1 + i)73-s − 1.41·89-s + (1 − i)97-s + 1.41i·101-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0618i)\, \overline{\Lambda}(1-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 3600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0618i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$3600$$    =    $$2^{4} \cdot 3^{2} \cdot 5^{2}$$ Sign: $0.998 + 0.0618i$ Motivic weight: $$0$$ Character: $\chi_{3600} (143, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 3600,\ (\ :0),\ 0.998 + 0.0618i)$$

## Particular Values

 $$L(\frac{1}{2})$$ $$\approx$$ $$1.289309924$$ $$L(\frac12)$$ $$\approx$$ $$1.289309924$$ $$L(1)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1$$
3 $$1$$
5 $$1$$
good7 $$1 + iT^{2}$$
11 $$1 + T^{2}$$
13 $$1 + (1 + i)T + iT^{2}$$
17 $$1 + (-1.41 - 1.41i)T + iT^{2}$$
19 $$1 + T^{2}$$
23 $$1 + iT^{2}$$
29 $$1 - 1.41T + T^{2}$$
31 $$1 - T^{2}$$
37 $$1 + (-1 + i)T - iT^{2}$$
41 $$1 - 1.41iT - T^{2}$$
43 $$1 - iT^{2}$$
47 $$1 - iT^{2}$$
53 $$1 + (-1.41 + 1.41i)T - iT^{2}$$
59 $$1 - T^{2}$$
61 $$1 + T^{2}$$
67 $$1 + iT^{2}$$
71 $$1 + T^{2}$$
73 $$1 + (-1 - i)T + iT^{2}$$
79 $$1 + T^{2}$$
83 $$1 + iT^{2}$$
89 $$1 + 1.41T + T^{2}$$
97 $$1 + (-1 + i)T - iT^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$