Properties

Label 2-360-1.1-c5-0-16
Degree $2$
Conductor $360$
Sign $-1$
Analytic cond. $57.7381$
Root an. cond. $7.59856$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 25·5-s − 42.1·7-s − 416.·11-s + 966.·13-s + 1.83e3·17-s + 317.·19-s − 1.56e3·23-s + 625·25-s − 7.75e3·29-s + 102.·31-s + 1.05e3·35-s + 1.93e3·37-s − 7.99e3·41-s + 1.65e4·43-s − 1.86e4·47-s − 1.50e4·49-s + 1.49e4·53-s + 1.04e4·55-s − 1.98e4·59-s − 1.80e4·61-s − 2.41e4·65-s − 5.50e4·67-s − 1.12e4·71-s − 4.01e3·73-s + 1.75e4·77-s + 2.40e4·79-s − 7.05e4·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.325·7-s − 1.03·11-s + 1.58·13-s + 1.53·17-s + 0.201·19-s − 0.618·23-s + 0.200·25-s − 1.71·29-s + 0.0191·31-s + 0.145·35-s + 0.232·37-s − 0.742·41-s + 1.36·43-s − 1.23·47-s − 0.894·49-s + 0.732·53-s + 0.463·55-s − 0.742·59-s − 0.620·61-s − 0.709·65-s − 1.49·67-s − 0.263·71-s − 0.0881·73-s + 0.337·77-s + 0.432·79-s − 1.12·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(360\)    =    \(2^{3} \cdot 3^{2} \cdot 5\)
Sign: $-1$
Analytic conductor: \(57.7381\)
Root analytic conductor: \(7.59856\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 360,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 25T \)
good7 \( 1 + 42.1T + 1.68e4T^{2} \)
11 \( 1 + 416.T + 1.61e5T^{2} \)
13 \( 1 - 966.T + 3.71e5T^{2} \)
17 \( 1 - 1.83e3T + 1.41e6T^{2} \)
19 \( 1 - 317.T + 2.47e6T^{2} \)
23 \( 1 + 1.56e3T + 6.43e6T^{2} \)
29 \( 1 + 7.75e3T + 2.05e7T^{2} \)
31 \( 1 - 102.T + 2.86e7T^{2} \)
37 \( 1 - 1.93e3T + 6.93e7T^{2} \)
41 \( 1 + 7.99e3T + 1.15e8T^{2} \)
43 \( 1 - 1.65e4T + 1.47e8T^{2} \)
47 \( 1 + 1.86e4T + 2.29e8T^{2} \)
53 \( 1 - 1.49e4T + 4.18e8T^{2} \)
59 \( 1 + 1.98e4T + 7.14e8T^{2} \)
61 \( 1 + 1.80e4T + 8.44e8T^{2} \)
67 \( 1 + 5.50e4T + 1.35e9T^{2} \)
71 \( 1 + 1.12e4T + 1.80e9T^{2} \)
73 \( 1 + 4.01e3T + 2.07e9T^{2} \)
79 \( 1 - 2.40e4T + 3.07e9T^{2} \)
83 \( 1 + 7.05e4T + 3.93e9T^{2} \)
89 \( 1 - 6.07e4T + 5.58e9T^{2} \)
97 \( 1 + 3.11e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25160493688068202945839663097, −9.237131210553575775016091867117, −8.122161063756813057898750422720, −7.53393840382171027905279004621, −6.16174396649740058913302395122, −5.36272157501035439001655553845, −3.90834956479048778559549269852, −3.06378771459378013742287111027, −1.41152379476594605241601133615, 0, 1.41152379476594605241601133615, 3.06378771459378013742287111027, 3.90834956479048778559549269852, 5.36272157501035439001655553845, 6.16174396649740058913302395122, 7.53393840382171027905279004621, 8.122161063756813057898750422720, 9.237131210553575775016091867117, 10.25160493688068202945839663097

Graph of the $Z$-function along the critical line