L(s) = 1 | + (−2 + i)5-s + 2i·7-s − 2·11-s + 2i·13-s + 6i·17-s − 8·19-s + 4i·23-s + (3 − 4i)25-s + 8·29-s + (−2 − 4i)35-s + 10i·37-s − 2·41-s − 12i·43-s + 3·49-s − 10i·53-s + ⋯ |
L(s) = 1 | + (−0.894 + 0.447i)5-s + 0.755i·7-s − 0.603·11-s + 0.554i·13-s + 1.45i·17-s − 1.83·19-s + 0.834i·23-s + (0.600 − 0.800i)25-s + 1.48·29-s + (−0.338 − 0.676i)35-s + 1.64i·37-s − 0.312·41-s − 1.82i·43-s + 0.428·49-s − 1.37i·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.414048 + 0.669943i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.414048 + 0.669943i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2 - i)T \) |
good | 7 | \( 1 - 2iT - 7T^{2} \) |
| 11 | \( 1 + 2T + 11T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 - 6iT - 17T^{2} \) |
| 19 | \( 1 + 8T + 19T^{2} \) |
| 23 | \( 1 - 4iT - 23T^{2} \) |
| 29 | \( 1 - 8T + 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 - 10iT - 37T^{2} \) |
| 41 | \( 1 + 2T + 41T^{2} \) |
| 43 | \( 1 + 12iT - 43T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 + 10iT - 53T^{2} \) |
| 59 | \( 1 + 6T + 59T^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 - 8iT - 67T^{2} \) |
| 71 | \( 1 - 4T + 71T^{2} \) |
| 73 | \( 1 - 4iT - 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + 4iT - 83T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + 8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.80210888241706262621298027878, −10.80040561276049023925394338788, −10.13132762261123793513291037470, −8.585616972306893103939095061379, −8.281361488778413926463002734989, −6.93043854564591477779557992318, −6.08256025102826789712467462417, −4.70015757120587292748410980883, −3.60070950372770491348534872187, −2.21230070927819415853594571671,
0.52628682333098433130296392786, 2.77212848526543163278910110492, 4.19791095133386478732424228648, 4.94091759316762413426731784931, 6.45518930545176223838856956012, 7.51141579759640834159242484090, 8.217447225720674731267822909093, 9.200996140699861748593738318899, 10.49328321214195567745791798463, 10.97047280000368757684386671512