Properties

Label 8-360e4-1.1-c1e4-0-11
Degree $8$
Conductor $16796160000$
Sign $1$
Analytic cond. $68.2839$
Root an. cond. $1.69546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·25-s + 16·31-s + 16·49-s + 8·64-s + 48·71-s − 16·79-s − 24·89-s + 4·100-s + 20·121-s − 32·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 52·169-s + 173-s + 179-s + 181-s + 191-s + 193-s − 32·196-s + ⋯
L(s)  = 1  − 4-s − 2/5·25-s + 2.87·31-s + 16/7·49-s + 64-s + 5.69·71-s − 1.80·79-s − 2.54·89-s + 2/5·100-s + 1.81·121-s − 2.87·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 4·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s − 2.28·196-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(68.2839\)
Root analytic conductor: \(1.69546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{8} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.434530147\)
\(L(\frac12)\) \(\approx\) \(1.434530147\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
3 \( 1 \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
good7$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2$ \( ( 1 + p T^{2} )^{4} \)
17$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
23$C_2^2$ \( ( 1 - 40 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 + 68 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 40 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 116 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 68 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 170 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.357016370286650825145375712662, −8.140052446631286621262658391081, −8.007220174594478590002297617751, −7.48534017911455403144071472684, −7.23313098053844548275720731489, −7.20312082287549614842798250597, −6.70141118107415130971823404753, −6.64641319604065193482331579144, −6.03245287575179607252013064012, −5.99660398049163292815948163299, −5.97418809060218922823645102518, −5.24004343303546215608186826086, −5.09215900525180567985896061918, −4.84261841307438770111456237884, −4.77462818805727155274658996389, −4.16757716991330336580032420465, −4.00230471430741844087964481399, −3.65335937704852227453666852293, −3.64399532427296982381799044059, −2.73956007242118671525097618182, −2.54240462806383525162049075251, −2.51617530039203534807036253658, −1.71115904636216459061935148406, −1.09477466940388879861630604778, −0.59181828826030600195408820638, 0.59181828826030600195408820638, 1.09477466940388879861630604778, 1.71115904636216459061935148406, 2.51617530039203534807036253658, 2.54240462806383525162049075251, 2.73956007242118671525097618182, 3.64399532427296982381799044059, 3.65335937704852227453666852293, 4.00230471430741844087964481399, 4.16757716991330336580032420465, 4.77462818805727155274658996389, 4.84261841307438770111456237884, 5.09215900525180567985896061918, 5.24004343303546215608186826086, 5.97418809060218922823645102518, 5.99660398049163292815948163299, 6.03245287575179607252013064012, 6.64641319604065193482331579144, 6.70141118107415130971823404753, 7.20312082287549614842798250597, 7.23313098053844548275720731489, 7.48534017911455403144071472684, 8.007220174594478590002297617751, 8.140052446631286621262658391081, 8.357016370286650825145375712662

Graph of the $Z$-function along the critical line