Properties

Label 2-6e2-4.3-c6-0-2
Degree $2$
Conductor $36$
Sign $0.875 - 0.484i$
Analytic cond. $8.28194$
Root an. cond. $2.87783$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2 − 7.74i)2-s + (−56.0 + 30.9i)4-s − 10·5-s + 309. i·7-s + (352. + 371. i)8-s + (20 + 77.4i)10-s + 960. i·11-s + 1.46e3·13-s + (2.40e3 − 619. i)14-s + (2.17e3 − 3.47e3i)16-s + 4.76e3·17-s + 7.52e3i·19-s + (560. − 309. i)20-s + (7.44e3 − 1.92e3i)22-s + 1.04e4i·23-s + ⋯
L(s)  = 1  + (−0.250 − 0.968i)2-s + (−0.875 + 0.484i)4-s − 0.0800·5-s + 0.903i·7-s + (0.687 + 0.726i)8-s + (0.0200 + 0.0774i)10-s + 0.721i·11-s + 0.667·13-s + (0.874 − 0.225i)14-s + (0.531 − 0.847i)16-s + 0.970·17-s + 1.09i·19-s + (0.0700 − 0.0387i)20-s + (0.698 − 0.180i)22-s + 0.860i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.875 - 0.484i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (0.875 - 0.484i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(36\)    =    \(2^{2} \cdot 3^{2}\)
Sign: $0.875 - 0.484i$
Analytic conductor: \(8.28194\)
Root analytic conductor: \(2.87783\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{36} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 36,\ (\ :3),\ 0.875 - 0.484i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(1.08316 + 0.279672i\)
\(L(\frac12)\) \(\approx\) \(1.08316 + 0.279672i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (2 + 7.74i)T \)
3 \( 1 \)
good5 \( 1 + 10T + 1.56e4T^{2} \)
7 \( 1 - 309. iT - 1.17e5T^{2} \)
11 \( 1 - 960. iT - 1.77e6T^{2} \)
13 \( 1 - 1.46e3T + 4.82e6T^{2} \)
17 \( 1 - 4.76e3T + 2.41e7T^{2} \)
19 \( 1 - 7.52e3iT - 4.70e7T^{2} \)
23 \( 1 - 1.04e4iT - 1.48e8T^{2} \)
29 \( 1 + 2.54e4T + 5.94e8T^{2} \)
31 \( 1 - 4.18e4iT - 8.87e8T^{2} \)
37 \( 1 - 1.99e3T + 2.56e9T^{2} \)
41 \( 1 + 2.93e4T + 4.75e9T^{2} \)
43 \( 1 + 2.15e4iT - 6.32e9T^{2} \)
47 \( 1 - 7.56e3iT - 1.07e10T^{2} \)
53 \( 1 - 1.92e5T + 2.21e10T^{2} \)
59 \( 1 - 7.84e4iT - 4.21e10T^{2} \)
61 \( 1 + 1.09e4T + 5.15e10T^{2} \)
67 \( 1 + 3.94e5iT - 9.04e10T^{2} \)
71 \( 1 + 5.32e5iT - 1.28e11T^{2} \)
73 \( 1 - 2.88e5T + 1.51e11T^{2} \)
79 \( 1 + 3.10e5iT - 2.43e11T^{2} \)
83 \( 1 - 2.04e5iT - 3.26e11T^{2} \)
89 \( 1 + 3.10e5T + 4.96e11T^{2} \)
97 \( 1 + 1.45e6T + 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.19755129769794762188397093459, −13.86133369304127629027848202170, −12.50234514752396569369057100319, −11.74401993254377110396440551467, −10.28644249148582617274419606406, −9.146381875245853150472495329173, −7.82144820074768550819296707183, −5.49372218812668412870995172440, −3.58534030091463156957275559967, −1.73440716424836894128099930297, 0.66216327723945447924290492526, 3.99108376444755018349914647240, 5.77345908724164017939585401655, 7.21204729706262020207796872116, 8.421464492921012040452393287853, 9.854141353182004647642123314349, 11.16483195714808959246272943063, 13.16477310494905267473887220700, 13.97532729971438139979261159079, 15.20556111485963827446348057610

Graph of the $Z$-function along the critical line