Properties

Label 2-6e2-36.11-c5-0-24
Degree $2$
Conductor $36$
Sign $-0.662 + 0.749i$
Analytic cond. $5.77381$
Root an. cond. $2.40287$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.72 + 5.38i)2-s + (−3.10 − 15.2i)3-s + (−26.0 + 18.5i)4-s + (−20.1 + 11.6i)5-s + (76.9 − 43.1i)6-s + (−156. − 90.5i)7-s + (−145. − 108. i)8-s + (−223. + 94.9i)9-s + (−97.4 − 88.4i)10-s + (41.2 − 71.4i)11-s + (364. + 340. i)12-s + (−70.1 − 121. i)13-s + (217. − 1.00e3i)14-s + (240. + 271. i)15-s + (332. − 968. i)16-s − 901. i·17-s + ⋯
L(s)  = 1  + (0.305 + 0.952i)2-s + (−0.199 − 0.979i)3-s + (−0.813 + 0.581i)4-s + (−0.360 + 0.208i)5-s + (0.872 − 0.488i)6-s + (−1.20 − 0.698i)7-s + (−0.801 − 0.597i)8-s + (−0.920 + 0.390i)9-s + (−0.308 − 0.279i)10-s + (0.102 − 0.178i)11-s + (0.731 + 0.681i)12-s + (−0.115 − 0.199i)13-s + (0.296 − 1.36i)14-s + (0.275 + 0.311i)15-s + (0.324 − 0.945i)16-s − 0.756i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.662 + 0.749i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.662 + 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(36\)    =    \(2^{2} \cdot 3^{2}\)
Sign: $-0.662 + 0.749i$
Analytic conductor: \(5.77381\)
Root analytic conductor: \(2.40287\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{36} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 36,\ (\ :5/2),\ -0.662 + 0.749i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.103618 - 0.229895i\)
\(L(\frac12)\) \(\approx\) \(0.103618 - 0.229895i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.72 - 5.38i)T \)
3 \( 1 + (3.10 + 15.2i)T \)
good5 \( 1 + (20.1 - 11.6i)T + (1.56e3 - 2.70e3i)T^{2} \)
7 \( 1 + (156. + 90.5i)T + (8.40e3 + 1.45e4i)T^{2} \)
11 \( 1 + (-41.2 + 71.4i)T + (-8.05e4 - 1.39e5i)T^{2} \)
13 \( 1 + (70.1 + 121. i)T + (-1.85e5 + 3.21e5i)T^{2} \)
17 \( 1 + 901. iT - 1.41e6T^{2} \)
19 \( 1 - 2.36e3iT - 2.47e6T^{2} \)
23 \( 1 + (-160. - 277. i)T + (-3.21e6 + 5.57e6i)T^{2} \)
29 \( 1 + (7.03e3 + 4.06e3i)T + (1.02e7 + 1.77e7i)T^{2} \)
31 \( 1 + (-1.53e3 + 885. i)T + (1.43e7 - 2.47e7i)T^{2} \)
37 \( 1 - 1.37e4T + 6.93e7T^{2} \)
41 \( 1 + (4.37e3 - 2.52e3i)T + (5.79e7 - 1.00e8i)T^{2} \)
43 \( 1 + (1.72e4 + 9.96e3i)T + (7.35e7 + 1.27e8i)T^{2} \)
47 \( 1 + (-6.62e3 + 1.14e4i)T + (-1.14e8 - 1.98e8i)T^{2} \)
53 \( 1 + 2.50e4iT - 4.18e8T^{2} \)
59 \( 1 + (2.01e4 + 3.49e4i)T + (-3.57e8 + 6.19e8i)T^{2} \)
61 \( 1 + (8.93e3 - 1.54e4i)T + (-4.22e8 - 7.31e8i)T^{2} \)
67 \( 1 + (2.90e4 - 1.67e4i)T + (6.75e8 - 1.16e9i)T^{2} \)
71 \( 1 - 5.58e4T + 1.80e9T^{2} \)
73 \( 1 + 6.98e4T + 2.07e9T^{2} \)
79 \( 1 + (3.30e4 + 1.90e4i)T + (1.53e9 + 2.66e9i)T^{2} \)
83 \( 1 + (1.11e4 - 1.92e4i)T + (-1.96e9 - 3.41e9i)T^{2} \)
89 \( 1 - 9.89e4iT - 5.58e9T^{2} \)
97 \( 1 + (2.07e4 - 3.59e4i)T + (-4.29e9 - 7.43e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.96351756955203212892994827174, −13.66753549210784174535880745076, −12.97252919005672922004068802346, −11.71166068785778307035273781411, −9.713340071463397071750747241787, −7.941086073020624923867033388443, −6.98599321958688030015490455650, −5.81810061292741725543789145816, −3.53504441506459247461914169898, −0.13217848030905343339526076811, 2.98555269040233507322961567653, 4.45005352201161364747350405648, 6.01748907008231180170727209570, 8.889278342260386048032666495599, 9.696270967186676133874792987623, 10.99528298444220324283250213659, 12.12371313800330810891749870919, 13.18709772433510324935816474067, 14.81850137578990468501195186428, 15.67103273978701123746990858637

Graph of the $Z$-function along the critical line