Properties

Label 2-6e2-36.11-c5-0-25
Degree $2$
Conductor $36$
Sign $-0.999 + 0.00442i$
Analytic cond. $5.77381$
Root an. cond. $2.40287$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.253 − 5.65i)2-s + (−2.08 − 15.4i)3-s + (−31.8 − 2.86i)4-s + (84.3 − 48.6i)5-s + (−87.8 + 7.87i)6-s + (−87.9 − 50.7i)7-s + (−24.2 + 179. i)8-s + (−234. + 64.5i)9-s + (−253. − 488. i)10-s + (−73.2 + 126. i)11-s + (22.2 + 498. i)12-s + (402. + 697. i)13-s + (−309. + 484. i)14-s + (−928. − 1.20e3i)15-s + (1.00e3 + 182. i)16-s − 1.23e3i·17-s + ⋯
L(s)  = 1  + (0.0448 − 0.998i)2-s + (−0.133 − 0.990i)3-s + (−0.995 − 0.0895i)4-s + (1.50 − 0.870i)5-s + (−0.995 + 0.0893i)6-s + (−0.678 − 0.391i)7-s + (−0.134 + 0.990i)8-s + (−0.964 + 0.265i)9-s + (−0.802 − 1.54i)10-s + (−0.182 + 0.316i)11-s + (0.0446 + 0.999i)12-s + (0.661 + 1.14i)13-s + (−0.421 + 0.660i)14-s + (−1.06 − 1.37i)15-s + (0.983 + 0.178i)16-s − 1.03i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.00442i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.00442i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(36\)    =    \(2^{2} \cdot 3^{2}\)
Sign: $-0.999 + 0.00442i$
Analytic conductor: \(5.77381\)
Root analytic conductor: \(2.40287\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{36} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 36,\ (\ :5/2),\ -0.999 + 0.00442i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.00325425 - 1.47071i\)
\(L(\frac12)\) \(\approx\) \(0.00325425 - 1.47071i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.253 + 5.65i)T \)
3 \( 1 + (2.08 + 15.4i)T \)
good5 \( 1 + (-84.3 + 48.6i)T + (1.56e3 - 2.70e3i)T^{2} \)
7 \( 1 + (87.9 + 50.7i)T + (8.40e3 + 1.45e4i)T^{2} \)
11 \( 1 + (73.2 - 126. i)T + (-8.05e4 - 1.39e5i)T^{2} \)
13 \( 1 + (-402. - 697. i)T + (-1.85e5 + 3.21e5i)T^{2} \)
17 \( 1 + 1.23e3iT - 1.41e6T^{2} \)
19 \( 1 + 2.61e3iT - 2.47e6T^{2} \)
23 \( 1 + (-84.5 - 146. i)T + (-3.21e6 + 5.57e6i)T^{2} \)
29 \( 1 + (-1.95e3 - 1.12e3i)T + (1.02e7 + 1.77e7i)T^{2} \)
31 \( 1 + (-1.78e3 + 1.03e3i)T + (1.43e7 - 2.47e7i)T^{2} \)
37 \( 1 - 445.T + 6.93e7T^{2} \)
41 \( 1 + (1.72e3 - 993. i)T + (5.79e7 - 1.00e8i)T^{2} \)
43 \( 1 + (-3.46e3 - 2.00e3i)T + (7.35e7 + 1.27e8i)T^{2} \)
47 \( 1 + (3.53e3 - 6.13e3i)T + (-1.14e8 - 1.98e8i)T^{2} \)
53 \( 1 + 6.23e3iT - 4.18e8T^{2} \)
59 \( 1 + (-1.67e4 - 2.89e4i)T + (-3.57e8 + 6.19e8i)T^{2} \)
61 \( 1 + (-1.47e4 + 2.54e4i)T + (-4.22e8 - 7.31e8i)T^{2} \)
67 \( 1 + (-2.33e4 + 1.34e4i)T + (6.75e8 - 1.16e9i)T^{2} \)
71 \( 1 - 3.63e4T + 1.80e9T^{2} \)
73 \( 1 + 3.82e4T + 2.07e9T^{2} \)
79 \( 1 + (-5.45e4 - 3.14e4i)T + (1.53e9 + 2.66e9i)T^{2} \)
83 \( 1 + (3.99e4 - 6.92e4i)T + (-1.96e9 - 3.41e9i)T^{2} \)
89 \( 1 - 9.66e4iT - 5.58e9T^{2} \)
97 \( 1 + (8.31e3 - 1.44e4i)T + (-4.29e9 - 7.43e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.91698803834709081369670402044, −13.48484349805511634401198517257, −12.64476190826840007388539018006, −11.31363762885744398960569072177, −9.697941368874869018479656528184, −8.846018238637921171755533173385, −6.59865378391320494867172433196, −5.03173943400787595111675048053, −2.38151289511955541999131415622, −0.919698606723005918788729132289, 3.35423089345665393788318866146, 5.69155234221437689441890045432, 6.17613195403973806487377728619, 8.460649071955772753869157284114, 9.872162616360167509084042032139, 10.44735386386255687357645294664, 12.85467647481158788502007812634, 14.04155564277456395052749978232, 14.92874256893963954590231190239, 15.95164915714940971490263413000

Graph of the $Z$-function along the critical line