Properties

Label 2-354-1.1-c5-0-13
Degree $2$
Conductor $354$
Sign $1$
Analytic cond. $56.7758$
Root an. cond. $7.53497$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 9·3-s + 16·4-s − 53.0·5-s + 36·6-s − 109.·7-s + 64·8-s + 81·9-s − 212.·10-s + 76.7·11-s + 144·12-s + 550.·13-s − 437.·14-s − 477.·15-s + 256·16-s − 1.73e3·17-s + 324·18-s + 2.70e3·19-s − 848.·20-s − 983.·21-s + 307.·22-s + 4.04e3·23-s + 576·24-s − 314.·25-s + 2.20e3·26-s + 729·27-s − 1.74e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.948·5-s + 0.408·6-s − 0.842·7-s + 0.353·8-s + 0.333·9-s − 0.670·10-s + 0.191·11-s + 0.288·12-s + 0.903·13-s − 0.596·14-s − 0.547·15-s + 0.250·16-s − 1.45·17-s + 0.235·18-s + 1.71·19-s − 0.474·20-s − 0.486·21-s + 0.135·22-s + 1.59·23-s + 0.204·24-s − 0.100·25-s + 0.638·26-s + 0.192·27-s − 0.421·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(354\)    =    \(2 \cdot 3 \cdot 59\)
Sign: $1$
Analytic conductor: \(56.7758\)
Root analytic conductor: \(7.53497\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 354,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.356715495\)
\(L(\frac12)\) \(\approx\) \(3.356715495\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
3 \( 1 - 9T \)
59 \( 1 - 3.48e3T \)
good5 \( 1 + 53.0T + 3.12e3T^{2} \)
7 \( 1 + 109.T + 1.68e4T^{2} \)
11 \( 1 - 76.7T + 1.61e5T^{2} \)
13 \( 1 - 550.T + 3.71e5T^{2} \)
17 \( 1 + 1.73e3T + 1.41e6T^{2} \)
19 \( 1 - 2.70e3T + 2.47e6T^{2} \)
23 \( 1 - 4.04e3T + 6.43e6T^{2} \)
29 \( 1 + 7.12e3T + 2.05e7T^{2} \)
31 \( 1 - 6.67e3T + 2.86e7T^{2} \)
37 \( 1 - 4.94e3T + 6.93e7T^{2} \)
41 \( 1 - 1.33e4T + 1.15e8T^{2} \)
43 \( 1 - 1.19e4T + 1.47e8T^{2} \)
47 \( 1 - 2.44e4T + 2.29e8T^{2} \)
53 \( 1 - 1.53e4T + 4.18e8T^{2} \)
61 \( 1 + 1.18e4T + 8.44e8T^{2} \)
67 \( 1 - 5.83e4T + 1.35e9T^{2} \)
71 \( 1 + 7.88e3T + 1.80e9T^{2} \)
73 \( 1 - 1.00e4T + 2.07e9T^{2} \)
79 \( 1 + 4.55e4T + 3.07e9T^{2} \)
83 \( 1 + 7.36e4T + 3.93e9T^{2} \)
89 \( 1 + 1.44e4T + 5.58e9T^{2} \)
97 \( 1 - 5.81e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.99610669596170917399470078733, −9.575869723409545123639834461122, −8.817808026398242571589961325047, −7.60687419528407859729523406224, −6.91197724054992316673310375742, −5.76577659698756824728266279170, −4.35199026886272264430928390008, −3.58151803783987809156860947881, −2.65473352717323693755722326361, −0.888004521066059142337538096449, 0.888004521066059142337538096449, 2.65473352717323693755722326361, 3.58151803783987809156860947881, 4.35199026886272264430928390008, 5.76577659698756824728266279170, 6.91197724054992316673310375742, 7.60687419528407859729523406224, 8.817808026398242571589961325047, 9.575869723409545123639834461122, 10.99610669596170917399470078733

Graph of the $Z$-function along the critical line