Properties

Label 2-354-1.1-c5-0-16
Degree $2$
Conductor $354$
Sign $1$
Analytic cond. $56.7758$
Root an. cond. $7.53497$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 9·3-s + 16·4-s − 41.8·5-s − 36·6-s + 175.·7-s − 64·8-s + 81·9-s + 167.·10-s + 766.·11-s + 144·12-s + 577.·13-s − 703.·14-s − 376.·15-s + 256·16-s + 370.·17-s − 324·18-s − 446.·19-s − 668.·20-s + 1.58e3·21-s − 3.06e3·22-s + 956.·23-s − 576·24-s − 1.37e3·25-s − 2.31e3·26-s + 729·27-s + 2.81e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s − 0.747·5-s − 0.408·6-s + 1.35·7-s − 0.353·8-s + 0.333·9-s + 0.528·10-s + 1.91·11-s + 0.288·12-s + 0.948·13-s − 0.959·14-s − 0.431·15-s + 0.250·16-s + 0.310·17-s − 0.235·18-s − 0.283·19-s − 0.373·20-s + 0.783·21-s − 1.35·22-s + 0.377·23-s − 0.204·24-s − 0.440·25-s − 0.670·26-s + 0.192·27-s + 0.678·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(354\)    =    \(2 \cdot 3 \cdot 59\)
Sign: $1$
Analytic conductor: \(56.7758\)
Root analytic conductor: \(7.53497\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 354,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.375771889\)
\(L(\frac12)\) \(\approx\) \(2.375771889\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 - 9T \)
59 \( 1 + 3.48e3T \)
good5 \( 1 + 41.8T + 3.12e3T^{2} \)
7 \( 1 - 175.T + 1.68e4T^{2} \)
11 \( 1 - 766.T + 1.61e5T^{2} \)
13 \( 1 - 577.T + 3.71e5T^{2} \)
17 \( 1 - 370.T + 1.41e6T^{2} \)
19 \( 1 + 446.T + 2.47e6T^{2} \)
23 \( 1 - 956.T + 6.43e6T^{2} \)
29 \( 1 + 5.09e3T + 2.05e7T^{2} \)
31 \( 1 + 1.03e3T + 2.86e7T^{2} \)
37 \( 1 - 1.26e4T + 6.93e7T^{2} \)
41 \( 1 + 1.89e4T + 1.15e8T^{2} \)
43 \( 1 - 2.18e4T + 1.47e8T^{2} \)
47 \( 1 + 450.T + 2.29e8T^{2} \)
53 \( 1 - 1.72e4T + 4.18e8T^{2} \)
61 \( 1 + 2.43e4T + 8.44e8T^{2} \)
67 \( 1 - 2.52e4T + 1.35e9T^{2} \)
71 \( 1 + 7.82e4T + 1.80e9T^{2} \)
73 \( 1 - 2.95e3T + 2.07e9T^{2} \)
79 \( 1 - 4.69e4T + 3.07e9T^{2} \)
83 \( 1 + 4.51e4T + 3.93e9T^{2} \)
89 \( 1 - 5.62e4T + 5.58e9T^{2} \)
97 \( 1 - 1.44e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.77039828406991600629554035430, −9.398724354730032818311840144240, −8.745543263640206041146118283354, −7.980065997796403107746123337607, −7.19965644423870970861594648797, −6.00203976085456952136742380060, −4.35923387468719216979986083704, −3.57738351462937076435320000619, −1.84193995041294320823130051026, −1.00046571064026382839507143001, 1.00046571064026382839507143001, 1.84193995041294320823130051026, 3.57738351462937076435320000619, 4.35923387468719216979986083704, 6.00203976085456952136742380060, 7.19965644423870970861594648797, 7.980065997796403107746123337607, 8.745543263640206041146118283354, 9.398724354730032818311840144240, 10.77039828406991600629554035430

Graph of the $Z$-function along the critical line