Properties

Label 2-354-1.1-c5-0-20
Degree $2$
Conductor $354$
Sign $-1$
Analytic cond. $56.7758$
Root an. cond. $7.53497$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s − 9·3-s + 16·4-s − 77.5·5-s + 36·6-s + 95.6·7-s − 64·8-s + 81·9-s + 310.·10-s − 249.·11-s − 144·12-s + 59.0·13-s − 382.·14-s + 698.·15-s + 256·16-s − 1.92e3·17-s − 324·18-s + 1.54e3·19-s − 1.24e3·20-s − 860.·21-s + 998.·22-s + 3.20e3·23-s + 576·24-s + 2.89e3·25-s − 236.·26-s − 729·27-s + 1.52e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.38·5-s + 0.408·6-s + 0.737·7-s − 0.353·8-s + 0.333·9-s + 0.981·10-s − 0.622·11-s − 0.288·12-s + 0.0969·13-s − 0.521·14-s + 0.801·15-s + 0.250·16-s − 1.61·17-s − 0.235·18-s + 0.979·19-s − 0.693·20-s − 0.425·21-s + 0.439·22-s + 1.26·23-s + 0.204·24-s + 0.924·25-s − 0.0685·26-s − 0.192·27-s + 0.368·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(354\)    =    \(2 \cdot 3 \cdot 59\)
Sign: $-1$
Analytic conductor: \(56.7758\)
Root analytic conductor: \(7.53497\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 354,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 + 9T \)
59 \( 1 + 3.48e3T \)
good5 \( 1 + 77.5T + 3.12e3T^{2} \)
7 \( 1 - 95.6T + 1.68e4T^{2} \)
11 \( 1 + 249.T + 1.61e5T^{2} \)
13 \( 1 - 59.0T + 3.71e5T^{2} \)
17 \( 1 + 1.92e3T + 1.41e6T^{2} \)
19 \( 1 - 1.54e3T + 2.47e6T^{2} \)
23 \( 1 - 3.20e3T + 6.43e6T^{2} \)
29 \( 1 - 3.32e3T + 2.05e7T^{2} \)
31 \( 1 - 3.41e3T + 2.86e7T^{2} \)
37 \( 1 - 8.42e3T + 6.93e7T^{2} \)
41 \( 1 + 7.69e3T + 1.15e8T^{2} \)
43 \( 1 - 4.14e3T + 1.47e8T^{2} \)
47 \( 1 - 1.69e4T + 2.29e8T^{2} \)
53 \( 1 + 812.T + 4.18e8T^{2} \)
61 \( 1 + 9.68e3T + 8.44e8T^{2} \)
67 \( 1 - 1.85e4T + 1.35e9T^{2} \)
71 \( 1 - 1.75e4T + 1.80e9T^{2} \)
73 \( 1 + 6.62e4T + 2.07e9T^{2} \)
79 \( 1 - 4.13e4T + 3.07e9T^{2} \)
83 \( 1 + 2.92e4T + 3.93e9T^{2} \)
89 \( 1 + 6.86e4T + 5.58e9T^{2} \)
97 \( 1 + 6.12e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42544875296713009977208518675, −9.107088838907983056360094984732, −8.206190389732280742649267210910, −7.49053284495098937403943639954, −6.62130752787600206094359531439, −5.13438079696508575688335117510, −4.24508336553895002175081796819, −2.75228791162867434869843642854, −1.08212468495584953110107374779, 0, 1.08212468495584953110107374779, 2.75228791162867434869843642854, 4.24508336553895002175081796819, 5.13438079696508575688335117510, 6.62130752787600206094359531439, 7.49053284495098937403943639954, 8.206190389732280742649267210910, 9.107088838907983056360094984732, 10.42544875296713009977208518675

Graph of the $Z$-function along the critical line