Properties

Label 2-354-1.1-c5-0-15
Degree $2$
Conductor $354$
Sign $1$
Analytic cond. $56.7758$
Root an. cond. $7.53497$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 9·3-s + 16·4-s + 107.·5-s − 36·6-s − 223.·7-s + 64·8-s + 81·9-s + 430.·10-s + 283.·11-s − 144·12-s − 1.08e3·13-s − 893.·14-s − 968.·15-s + 256·16-s + 1.93e3·17-s + 324·18-s + 2.46e3·19-s + 1.72e3·20-s + 2.01e3·21-s + 1.13e3·22-s − 1.89e3·23-s − 576·24-s + 8.46e3·25-s − 4.34e3·26-s − 729·27-s − 3.57e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.92·5-s − 0.408·6-s − 1.72·7-s + 0.353·8-s + 0.333·9-s + 1.36·10-s + 0.706·11-s − 0.288·12-s − 1.78·13-s − 1.21·14-s − 1.11·15-s + 0.250·16-s + 1.62·17-s + 0.235·18-s + 1.56·19-s + 0.962·20-s + 0.995·21-s + 0.499·22-s − 0.748·23-s − 0.204·24-s + 2.70·25-s − 1.26·26-s − 0.192·27-s − 0.861·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(354\)    =    \(2 \cdot 3 \cdot 59\)
Sign: $1$
Analytic conductor: \(56.7758\)
Root analytic conductor: \(7.53497\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 354,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.492180751\)
\(L(\frac12)\) \(\approx\) \(3.492180751\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
3 \( 1 + 9T \)
59 \( 1 + 3.48e3T \)
good5 \( 1 - 107.T + 3.12e3T^{2} \)
7 \( 1 + 223.T + 1.68e4T^{2} \)
11 \( 1 - 283.T + 1.61e5T^{2} \)
13 \( 1 + 1.08e3T + 3.71e5T^{2} \)
17 \( 1 - 1.93e3T + 1.41e6T^{2} \)
19 \( 1 - 2.46e3T + 2.47e6T^{2} \)
23 \( 1 + 1.89e3T + 6.43e6T^{2} \)
29 \( 1 - 3.91e3T + 2.05e7T^{2} \)
31 \( 1 - 768.T + 2.86e7T^{2} \)
37 \( 1 + 4.35e3T + 6.93e7T^{2} \)
41 \( 1 + 8.18e3T + 1.15e8T^{2} \)
43 \( 1 - 9.56e3T + 1.47e8T^{2} \)
47 \( 1 + 369.T + 2.29e8T^{2} \)
53 \( 1 - 2.24e4T + 4.18e8T^{2} \)
61 \( 1 - 3.55e4T + 8.44e8T^{2} \)
67 \( 1 + 7.74e3T + 1.35e9T^{2} \)
71 \( 1 - 1.49e4T + 1.80e9T^{2} \)
73 \( 1 - 2.38e4T + 2.07e9T^{2} \)
79 \( 1 + 3.08e4T + 3.07e9T^{2} \)
83 \( 1 - 9.63e4T + 3.93e9T^{2} \)
89 \( 1 - 5.74e4T + 5.58e9T^{2} \)
97 \( 1 - 9.08e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19131953995642871216007822176, −9.952663617254530661813301574266, −9.356622161100645015476497465617, −7.26270146521607143377666618669, −6.51751471411509824936779401253, −5.72280011279623253978913773985, −5.10960563210799114091992517472, −3.37111749574824606022592761648, −2.40554528662279928294378248363, −0.966697643504649610520063055262, 0.966697643504649610520063055262, 2.40554528662279928294378248363, 3.37111749574824606022592761648, 5.10960563210799114091992517472, 5.72280011279623253978913773985, 6.51751471411509824936779401253, 7.26270146521607143377666618669, 9.356622161100645015476497465617, 9.952663617254530661813301574266, 10.19131953995642871216007822176

Graph of the $Z$-function along the critical line