Properties

Label 2-354-1.1-c5-0-8
Degree $2$
Conductor $354$
Sign $1$
Analytic cond. $56.7758$
Root an. cond. $7.53497$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 9·3-s + 16·4-s − 66.4·5-s − 36·6-s + 22.9·7-s + 64·8-s + 81·9-s − 265.·10-s − 294.·11-s − 144·12-s + 180.·13-s + 91.8·14-s + 598.·15-s + 256·16-s + 218.·17-s + 324·18-s − 2.07e3·19-s − 1.06e3·20-s − 206.·21-s − 1.17e3·22-s − 1.86e3·23-s − 576·24-s + 1.29e3·25-s + 720.·26-s − 729·27-s + 367.·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.18·5-s − 0.408·6-s + 0.177·7-s + 0.353·8-s + 0.333·9-s − 0.840·10-s − 0.733·11-s − 0.288·12-s + 0.295·13-s + 0.125·14-s + 0.686·15-s + 0.250·16-s + 0.183·17-s + 0.235·18-s − 1.31·19-s − 0.594·20-s − 0.102·21-s − 0.518·22-s − 0.734·23-s − 0.204·24-s + 0.413·25-s + 0.209·26-s − 0.192·27-s + 0.0885·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(354\)    =    \(2 \cdot 3 \cdot 59\)
Sign: $1$
Analytic conductor: \(56.7758\)
Root analytic conductor: \(7.53497\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 354,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.739460403\)
\(L(\frac12)\) \(\approx\) \(1.739460403\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
3 \( 1 + 9T \)
59 \( 1 + 3.48e3T \)
good5 \( 1 + 66.4T + 3.12e3T^{2} \)
7 \( 1 - 22.9T + 1.68e4T^{2} \)
11 \( 1 + 294.T + 1.61e5T^{2} \)
13 \( 1 - 180.T + 3.71e5T^{2} \)
17 \( 1 - 218.T + 1.41e6T^{2} \)
19 \( 1 + 2.07e3T + 2.47e6T^{2} \)
23 \( 1 + 1.86e3T + 6.43e6T^{2} \)
29 \( 1 - 4.49e3T + 2.05e7T^{2} \)
31 \( 1 - 1.87e3T + 2.86e7T^{2} \)
37 \( 1 - 6.02e3T + 6.93e7T^{2} \)
41 \( 1 - 1.34e4T + 1.15e8T^{2} \)
43 \( 1 + 6.29e3T + 1.47e8T^{2} \)
47 \( 1 - 2.41e4T + 2.29e8T^{2} \)
53 \( 1 - 2.72e4T + 4.18e8T^{2} \)
61 \( 1 - 4.82e4T + 8.44e8T^{2} \)
67 \( 1 - 3.70e4T + 1.35e9T^{2} \)
71 \( 1 - 6.33e4T + 1.80e9T^{2} \)
73 \( 1 + 1.93e4T + 2.07e9T^{2} \)
79 \( 1 + 1.08e5T + 3.07e9T^{2} \)
83 \( 1 - 9.50e4T + 3.93e9T^{2} \)
89 \( 1 - 1.30e4T + 5.58e9T^{2} \)
97 \( 1 + 1.34e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.91994568185974111540631260103, −10.09526867430232319559887434225, −8.451073654705029928416516548437, −7.74952437752571824636457808333, −6.69385899783871538167729195123, −5.68917325821079527112231554061, −4.54643016007894026201367027579, −3.84911495510079868043670026569, −2.40883600999887802840932431599, −0.64870039828973088126366923481, 0.64870039828973088126366923481, 2.40883600999887802840932431599, 3.84911495510079868043670026569, 4.54643016007894026201367027579, 5.68917325821079527112231554061, 6.69385899783871538167729195123, 7.74952437752571824636457808333, 8.451073654705029928416516548437, 10.09526867430232319559887434225, 10.91994568185974111540631260103

Graph of the $Z$-function along the critical line