Properties

Label 2-354-1.1-c5-0-39
Degree $2$
Conductor $354$
Sign $-1$
Analytic cond. $56.7758$
Root an. cond. $7.53497$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 9·3-s + 16·4-s − 9.50·5-s − 36·6-s − 69.2·7-s + 64·8-s + 81·9-s − 38.0·10-s + 374.·11-s − 144·12-s − 450.·13-s − 277.·14-s + 85.5·15-s + 256·16-s + 1.13e3·17-s + 324·18-s − 1.93e3·19-s − 152.·20-s + 623.·21-s + 1.49e3·22-s + 2.13e3·23-s − 576·24-s − 3.03e3·25-s − 1.80e3·26-s − 729·27-s − 1.10e3·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.169·5-s − 0.408·6-s − 0.534·7-s + 0.353·8-s + 0.333·9-s − 0.120·10-s + 0.932·11-s − 0.288·12-s − 0.739·13-s − 0.377·14-s + 0.0981·15-s + 0.250·16-s + 0.950·17-s + 0.235·18-s − 1.23·19-s − 0.0849·20-s + 0.308·21-s + 0.659·22-s + 0.841·23-s − 0.204·24-s − 0.971·25-s − 0.522·26-s − 0.192·27-s − 0.267·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(354\)    =    \(2 \cdot 3 \cdot 59\)
Sign: $-1$
Analytic conductor: \(56.7758\)
Root analytic conductor: \(7.53497\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 354,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
3 \( 1 + 9T \)
59 \( 1 - 3.48e3T \)
good5 \( 1 + 9.50T + 3.12e3T^{2} \)
7 \( 1 + 69.2T + 1.68e4T^{2} \)
11 \( 1 - 374.T + 1.61e5T^{2} \)
13 \( 1 + 450.T + 3.71e5T^{2} \)
17 \( 1 - 1.13e3T + 1.41e6T^{2} \)
19 \( 1 + 1.93e3T + 2.47e6T^{2} \)
23 \( 1 - 2.13e3T + 6.43e6T^{2} \)
29 \( 1 - 2.40e3T + 2.05e7T^{2} \)
31 \( 1 + 640.T + 2.86e7T^{2} \)
37 \( 1 - 206.T + 6.93e7T^{2} \)
41 \( 1 + 7.06e3T + 1.15e8T^{2} \)
43 \( 1 + 2.11e4T + 1.47e8T^{2} \)
47 \( 1 + 1.67e3T + 2.29e8T^{2} \)
53 \( 1 + 2.02e4T + 4.18e8T^{2} \)
61 \( 1 + 2.60e4T + 8.44e8T^{2} \)
67 \( 1 - 1.10e4T + 1.35e9T^{2} \)
71 \( 1 + 2.78e4T + 1.80e9T^{2} \)
73 \( 1 - 2.57e4T + 2.07e9T^{2} \)
79 \( 1 + 1.81e4T + 3.07e9T^{2} \)
83 \( 1 + 5.50e4T + 3.93e9T^{2} \)
89 \( 1 + 1.49e4T + 5.58e9T^{2} \)
97 \( 1 - 3.15e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28625351281267292353525775911, −9.486534790252677668124437091488, −8.144444347058944164023822086404, −6.94225537545125052183869980807, −6.31006949437139334543208993925, −5.20443081880767247582420192745, −4.19411013892117047538255936959, −3.11885275600258130289856156106, −1.57519226941104191984886677935, 0, 1.57519226941104191984886677935, 3.11885275600258130289856156106, 4.19411013892117047538255936959, 5.20443081880767247582420192745, 6.31006949437139334543208993925, 6.94225537545125052183869980807, 8.144444347058944164023822086404, 9.486534790252677668124437091488, 10.28625351281267292353525775911

Graph of the $Z$-function along the critical line