Properties

Label 2-354-1.1-c5-0-40
Degree $2$
Conductor $354$
Sign $-1$
Analytic cond. $56.7758$
Root an. cond. $7.53497$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 9·3-s + 16·4-s + 67.3·5-s − 36·6-s − 165.·7-s − 64·8-s + 81·9-s − 269.·10-s − 178.·11-s + 144·12-s + 328.·13-s + 660.·14-s + 606.·15-s + 256·16-s + 347.·17-s − 324·18-s + 116.·19-s + 1.07e3·20-s − 1.48e3·21-s + 712.·22-s − 4.82e3·23-s − 576·24-s + 1.40e3·25-s − 1.31e3·26-s + 729·27-s − 2.64e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s + 1.20·5-s − 0.408·6-s − 1.27·7-s − 0.353·8-s + 0.333·9-s − 0.851·10-s − 0.443·11-s + 0.288·12-s + 0.539·13-s + 0.900·14-s + 0.695·15-s + 0.250·16-s + 0.291·17-s − 0.235·18-s + 0.0740·19-s + 0.602·20-s − 0.735·21-s + 0.313·22-s − 1.90·23-s − 0.204·24-s + 0.451·25-s − 0.381·26-s + 0.192·27-s − 0.636·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(354\)    =    \(2 \cdot 3 \cdot 59\)
Sign: $-1$
Analytic conductor: \(56.7758\)
Root analytic conductor: \(7.53497\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 354,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
3 \( 1 - 9T \)
59 \( 1 - 3.48e3T \)
good5 \( 1 - 67.3T + 3.12e3T^{2} \)
7 \( 1 + 165.T + 1.68e4T^{2} \)
11 \( 1 + 178.T + 1.61e5T^{2} \)
13 \( 1 - 328.T + 3.71e5T^{2} \)
17 \( 1 - 347.T + 1.41e6T^{2} \)
19 \( 1 - 116.T + 2.47e6T^{2} \)
23 \( 1 + 4.82e3T + 6.43e6T^{2} \)
29 \( 1 + 3.87e3T + 2.05e7T^{2} \)
31 \( 1 + 491.T + 2.86e7T^{2} \)
37 \( 1 + 6.94e3T + 6.93e7T^{2} \)
41 \( 1 - 3.08e3T + 1.15e8T^{2} \)
43 \( 1 - 7.91e3T + 1.47e8T^{2} \)
47 \( 1 + 1.39e4T + 2.29e8T^{2} \)
53 \( 1 - 2.77e4T + 4.18e8T^{2} \)
61 \( 1 + 4.28e4T + 8.44e8T^{2} \)
67 \( 1 - 1.51e4T + 1.35e9T^{2} \)
71 \( 1 + 4.48e4T + 1.80e9T^{2} \)
73 \( 1 - 1.75e4T + 2.07e9T^{2} \)
79 \( 1 + 3.13e4T + 3.07e9T^{2} \)
83 \( 1 + 7.74e4T + 3.93e9T^{2} \)
89 \( 1 - 3.70e4T + 5.58e9T^{2} \)
97 \( 1 + 4.05e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.917797139393632385871158001016, −9.451631810568800733054480429259, −8.502476808717377713085879759552, −7.42485937718405995877056099673, −6.31523648186555332162863839210, −5.66943296123675154228423728571, −3.75092323333434892972592249107, −2.62643724614557346275004915496, −1.62530100509711008011055274520, 0, 1.62530100509711008011055274520, 2.62643724614557346275004915496, 3.75092323333434892972592249107, 5.66943296123675154228423728571, 6.31523648186555332162863839210, 7.42485937718405995877056099673, 8.502476808717377713085879759552, 9.451631810568800733054480429259, 9.917797139393632385871158001016

Graph of the $Z$-function along the critical line