Properties

Label 2-354-59.49-c1-0-8
Degree $2$
Conductor $354$
Sign $-0.0968 + 0.995i$
Analytic cond. $2.82670$
Root an. cond. $1.68128$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.370 − 0.928i)2-s + (0.994 + 0.108i)3-s + (−0.725 − 0.687i)4-s + (0.988 − 1.16i)5-s + (0.468 − 0.883i)6-s + (−2.12 − 1.28i)7-s + (−0.907 + 0.419i)8-s + (0.976 + 0.214i)9-s + (−0.715 − 1.34i)10-s + (0.211 − 3.89i)11-s + (−0.647 − 0.762i)12-s + (1.49 − 0.329i)13-s + (−1.97 + 1.50i)14-s + (1.10 − 1.05i)15-s + (0.0541 + 0.998i)16-s + (1.42 − 0.856i)17-s + ⋯
L(s)  = 1  + (0.261 − 0.656i)2-s + (0.573 + 0.0624i)3-s + (−0.362 − 0.343i)4-s + (0.442 − 0.520i)5-s + (0.191 − 0.360i)6-s + (−0.804 − 0.484i)7-s + (−0.320 + 0.148i)8-s + (0.325 + 0.0716i)9-s + (−0.226 − 0.426i)10-s + (0.0636 − 1.17i)11-s + (−0.186 − 0.220i)12-s + (0.415 − 0.0913i)13-s + (−0.528 + 0.401i)14-s + (0.286 − 0.271i)15-s + (0.0135 + 0.249i)16-s + (0.345 − 0.207i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0968 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 354 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0968 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(354\)    =    \(2 \cdot 3 \cdot 59\)
Sign: $-0.0968 + 0.995i$
Analytic conductor: \(2.82670\)
Root analytic conductor: \(1.68128\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{354} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 354,\ (\ :1/2),\ -0.0968 + 0.995i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.17139 - 1.29089i\)
\(L(\frac12)\) \(\approx\) \(1.17139 - 1.29089i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.370 + 0.928i)T \)
3 \( 1 + (-0.994 - 0.108i)T \)
59 \( 1 + (7.64 - 0.750i)T \)
good5 \( 1 + (-0.988 + 1.16i)T + (-0.808 - 4.93i)T^{2} \)
7 \( 1 + (2.12 + 1.28i)T + (3.27 + 6.18i)T^{2} \)
11 \( 1 + (-0.211 + 3.89i)T + (-10.9 - 1.18i)T^{2} \)
13 \( 1 + (-1.49 + 0.329i)T + (11.7 - 5.45i)T^{2} \)
17 \( 1 + (-1.42 + 0.856i)T + (7.96 - 15.0i)T^{2} \)
19 \( 1 + (-0.139 + 0.503i)T + (-16.2 - 9.79i)T^{2} \)
23 \( 1 + (-1.78 - 2.63i)T + (-8.51 + 21.3i)T^{2} \)
29 \( 1 + (-3.64 - 9.15i)T + (-21.0 + 19.9i)T^{2} \)
31 \( 1 + (1.84 + 6.65i)T + (-26.5 + 15.9i)T^{2} \)
37 \( 1 + (3.18 + 1.47i)T + (23.9 + 28.1i)T^{2} \)
41 \( 1 + (1.26 - 1.86i)T + (-15.1 - 38.0i)T^{2} \)
43 \( 1 + (0.159 + 2.93i)T + (-42.7 + 4.64i)T^{2} \)
47 \( 1 + (-8.34 - 9.82i)T + (-7.60 + 46.3i)T^{2} \)
53 \( 1 + (1.41 - 2.67i)T + (-29.7 - 43.8i)T^{2} \)
61 \( 1 + (4.37 - 10.9i)T + (-44.2 - 41.9i)T^{2} \)
67 \( 1 + (3.00 - 1.39i)T + (43.3 - 51.0i)T^{2} \)
71 \( 1 + (-4.71 - 5.55i)T + (-11.4 + 70.0i)T^{2} \)
73 \( 1 + (-3.51 + 2.67i)T + (19.5 - 70.3i)T^{2} \)
79 \( 1 + (-4.08 + 0.443i)T + (77.1 - 16.9i)T^{2} \)
83 \( 1 + (-15.0 + 5.06i)T + (66.0 - 50.2i)T^{2} \)
89 \( 1 + (-1.07 - 2.70i)T + (-64.6 + 61.2i)T^{2} \)
97 \( 1 + (-3.51 - 2.66i)T + (25.9 + 93.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.09724197450892433371941571363, −10.36696195147618127256266281748, −9.282522254963639637838783252545, −8.856063383668619400425446551147, −7.52907623123952338208533611355, −6.21413002557588460904085108544, −5.19309762508851335052591065281, −3.76991856909058613381940065964, −2.97230468220564566980518545920, −1.17548276910235360263455866250, 2.30547808821865463960324877654, 3.50867384938702188251166483611, 4.81769469909930995782401074272, 6.20026267663465416158916866212, 6.77461804740616299557452894863, 7.87310647051130548660849906386, 8.904398822265950362504339599719, 9.748915698806507968907747450973, 10.49184251483054427492758163487, 12.11606781427173465375742530236

Graph of the $Z$-function along the critical line