# Properties

 Degree $2$ Conductor $3528$ Sign $0.970 + 0.242i$ Motivic weight $0$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (0.866 − 0.5i)2-s + (0.793 + 0.608i)3-s + (0.499 − 0.866i)4-s + (0.991 + 0.130i)6-s − 0.999i·8-s + (0.258 + 0.965i)9-s + (−0.448 + 0.258i)11-s + (0.923 − 0.382i)12-s + (−0.5 − 0.866i)16-s + 1.98·17-s + (0.707 + 0.707i)18-s + 1.58i·19-s + (−0.258 + 0.448i)22-s + (0.608 − 0.793i)24-s + (−0.5 − 0.866i)25-s + ⋯
 L(s)  = 1 + (0.866 − 0.5i)2-s + (0.793 + 0.608i)3-s + (0.499 − 0.866i)4-s + (0.991 + 0.130i)6-s − 0.999i·8-s + (0.258 + 0.965i)9-s + (−0.448 + 0.258i)11-s + (0.923 − 0.382i)12-s + (−0.5 − 0.866i)16-s + 1.98·17-s + (0.707 + 0.707i)18-s + 1.58i·19-s + (−0.258 + 0.448i)22-s + (0.608 − 0.793i)24-s + (−0.5 − 0.866i)25-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$3528$$    =    $$2^{3} \cdot 3^{2} \cdot 7^{2}$$ Sign: $0.970 + 0.242i$ Motivic weight: $$0$$ Character: $\chi_{3528} (2939, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 3528,\ (\ :0),\ 0.970 + 0.242i)$$

## Particular Values

 $$L(\frac{1}{2})$$ $$\approx$$ $$2.833376249$$ $$L(\frac12)$$ $$\approx$$ $$2.833376249$$ $$L(1)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad2 $$1 + (-0.866 + 0.5i)T$$
3 $$1 + (-0.793 - 0.608i)T$$
7 $$1$$
good5 $$1 + (0.5 + 0.866i)T^{2}$$
11 $$1 + (0.448 - 0.258i)T + (0.5 - 0.866i)T^{2}$$
13 $$1 + (-0.5 - 0.866i)T^{2}$$
17 $$1 - 1.98T + T^{2}$$
19 $$1 - 1.58iT - T^{2}$$
23 $$1 + (-0.5 - 0.866i)T^{2}$$
29 $$1 + (-0.5 + 0.866i)T^{2}$$
31 $$1 + (-0.5 - 0.866i)T^{2}$$
37 $$1 - T^{2}$$
41 $$1 + (-0.130 + 0.226i)T + (-0.5 - 0.866i)T^{2}$$
43 $$1 + (0.965 + 1.67i)T + (-0.5 + 0.866i)T^{2}$$
47 $$1 + (0.5 - 0.866i)T^{2}$$
53 $$1 + T^{2}$$
59 $$1 + (0.608 - 1.05i)T + (-0.5 - 0.866i)T^{2}$$
61 $$1 + (-0.5 + 0.866i)T^{2}$$
67 $$1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2}$$
71 $$1 + T^{2}$$
73 $$1 + 1.21iT - T^{2}$$
79 $$1 + (0.5 - 0.866i)T^{2}$$
83 $$1 + (0.382 + 0.662i)T + (-0.5 + 0.866i)T^{2}$$
89 $$1 + 1.84T + T^{2}$$
97 $$1 + (-0.226 + 0.130i)T + (0.5 - 0.866i)T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−8.787953042268719559540231666477, −7.86412928756774927252737743857, −7.45110333569572128547824116047, −6.19381480848950290652857662123, −5.48770321937187280507957615810, −4.84054348237634495395962879527, −3.80310658545165585453114999895, −3.43857435055484385113814972945, −2.42620307081950177388392138754, −1.52775688435436435369141385290, 1.40881303361777353639516534741, 2.71620069194163141556831464289, 3.15986994181416274705576819987, 4.06226401448649985626430482396, 5.11112474747394538850362220865, 5.74665398215646335989429598426, 6.66712061338354724195162180584, 7.26794657517654587814965611468, 7.944448097543634624504937744047, 8.399544592739904302807555286369