Properties

Label 8-3528e4-1.1-c0e4-0-3
Degree $8$
Conductor $1.549\times 10^{14}$
Sign $1$
Analytic cond. $9.61042$
Root an. cond. $1.32691$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4-s + 2·8-s + 9-s − 2·11-s − 4·16-s − 2·18-s + 4·22-s − 2·25-s + 2·32-s + 36-s − 2·43-s − 2·44-s + 4·50-s + 3·64-s + 2·67-s + 2·72-s + 4·86-s − 4·88-s − 2·99-s − 2·100-s − 4·107-s + 4·113-s + 3·121-s + 127-s − 6·128-s + 131-s + ⋯
L(s)  = 1  − 2·2-s + 4-s + 2·8-s + 9-s − 2·11-s − 4·16-s − 2·18-s + 4·22-s − 2·25-s + 2·32-s + 36-s − 2·43-s − 2·44-s + 4·50-s + 3·64-s + 2·67-s + 2·72-s + 4·86-s − 4·88-s − 2·99-s − 2·100-s − 4·107-s + 4·113-s + 3·121-s + 127-s − 6·128-s + 131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(9.61042\)
Root analytic conductor: \(1.32691\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{8} \cdot 7^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.2058465385\)
\(L(\frac12)\) \(\approx\) \(0.2058465385\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T + T^{2} )^{2} \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
7 \( 1 \)
good5$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
11$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
13$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
17$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
23$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
29$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
31$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
41$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
47$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
53$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
61$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
79$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
83$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
89$C_2$ \( ( 1 + T^{2} )^{4} \)
97$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.20208793300539520749907447819, −6.12290762513905913767447961809, −6.06612146436700237984139863594, −5.49412646113211032712963826944, −5.34965341663820322603749321558, −5.33669425285980143677283930936, −5.05920633259048110981569120012, −4.82505034118184843350544657317, −4.73035543634894540203255999174, −4.50862723951997519328561710409, −4.25714491406107123714254798086, −3.91005677552811266864581172580, −3.71835541975936937054137983387, −3.70138241961071800714955637713, −3.50462363960872984512341434575, −2.94539513307650878063401173345, −2.68603060676965850021642576473, −2.56839747743186034436499420823, −2.22979918372010127398349688897, −1.99808935674086793156071730533, −1.64938834734945409537112654680, −1.56910118947029171975943124022, −1.27237444306253006333355946687, −0.70994332287186614771724499622, −0.34206758284333131160086962497, 0.34206758284333131160086962497, 0.70994332287186614771724499622, 1.27237444306253006333355946687, 1.56910118947029171975943124022, 1.64938834734945409537112654680, 1.99808935674086793156071730533, 2.22979918372010127398349688897, 2.56839747743186034436499420823, 2.68603060676965850021642576473, 2.94539513307650878063401173345, 3.50462363960872984512341434575, 3.70138241961071800714955637713, 3.71835541975936937054137983387, 3.91005677552811266864581172580, 4.25714491406107123714254798086, 4.50862723951997519328561710409, 4.73035543634894540203255999174, 4.82505034118184843350544657317, 5.05920633259048110981569120012, 5.33669425285980143677283930936, 5.34965341663820322603749321558, 5.49412646113211032712963826944, 6.06612146436700237984139863594, 6.12290762513905913767447961809, 6.20208793300539520749907447819

Graph of the $Z$-function along the critical line