Properties

Label 8-3528e4-1.1-c0e4-0-14
Degree $8$
Conductor $1.549\times 10^{14}$
Sign $1$
Analytic cond. $9.61042$
Root an. cond. $1.32691$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 10·4-s + 20·8-s + 9-s − 2·11-s + 35·16-s + 4·18-s − 8·22-s − 2·25-s + 56·32-s + 10·36-s − 2·43-s − 20·44-s − 8·50-s + 84·64-s − 4·67-s + 20·72-s − 8·86-s − 40·88-s − 2·99-s − 20·100-s + 2·107-s + 4·113-s + 3·121-s + 127-s + 120·128-s + 131-s + ⋯
L(s)  = 1  + 4·2-s + 10·4-s + 20·8-s + 9-s − 2·11-s + 35·16-s + 4·18-s − 8·22-s − 2·25-s + 56·32-s + 10·36-s − 2·43-s − 20·44-s − 8·50-s + 84·64-s − 4·67-s + 20·72-s − 8·86-s − 40·88-s − 2·99-s − 20·100-s + 2·107-s + 4·113-s + 3·121-s + 127-s + 120·128-s + 131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(9.61042\)
Root analytic conductor: \(1.32691\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{8} \cdot 7^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(34.06981238\)
\(L(\frac12)\) \(\approx\) \(34.06981238\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{4} \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
7 \( 1 \)
good5$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
11$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
13$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
17$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
19$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
29$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
31$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
37$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
41$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
53$C_2$ \( ( 1 - T + T^{2} )^{2}( 1 + T + T^{2} )^{2} \)
59$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
67$C_2$ \( ( 1 + T + T^{2} )^{4} \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
83$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
97$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.18256351694547769078107074552, −5.95591483206267339170616089488, −5.78752159459201593395873178730, −5.57866585753006904270252893606, −5.43779420884832283705897081469, −5.21975086219487835120749084357, −4.85409548575324260322186074397, −4.83694006765172745712026721795, −4.76048138334343864681289687447, −4.37610181681956975406612854120, −4.32420235388087467493381312829, −4.21718260032973309155577624806, −3.76881990575735506633775637596, −3.61088685752560499873008458928, −3.35646294671467833176834480307, −3.22467670364229765008594810217, −3.17711767920968668380279876335, −2.72372848457672153679145536314, −2.55336194721316292126627412318, −2.28205846763283607213959957695, −2.14525653474081361164154021050, −1.75848866271229996519326139013, −1.58926033695801821960870656194, −1.50192276516152470065178035986, −0.859911790455046369412508870855, 0.859911790455046369412508870855, 1.50192276516152470065178035986, 1.58926033695801821960870656194, 1.75848866271229996519326139013, 2.14525653474081361164154021050, 2.28205846763283607213959957695, 2.55336194721316292126627412318, 2.72372848457672153679145536314, 3.17711767920968668380279876335, 3.22467670364229765008594810217, 3.35646294671467833176834480307, 3.61088685752560499873008458928, 3.76881990575735506633775637596, 4.21718260032973309155577624806, 4.32420235388087467493381312829, 4.37610181681956975406612854120, 4.76048138334343864681289687447, 4.83694006765172745712026721795, 4.85409548575324260322186074397, 5.21975086219487835120749084357, 5.43779420884832283705897081469, 5.57866585753006904270252893606, 5.78752159459201593395873178730, 5.95591483206267339170616089488, 6.18256351694547769078107074552

Graph of the $Z$-function along the critical line