| L(s) = 1 | + (−0.929 − 0.536i)2-s + (−0.423 − 0.733i)4-s + (−1.10 + 0.638i)5-s + (0.890 + 0.514i)7-s + 3.05i·8-s + 1.37·10-s + (−4.03 − 2.33i)11-s + (−3.55 + 0.600i)13-s + (−0.552 − 0.956i)14-s + (0.794 − 1.37i)16-s + 0.476·17-s + 6.69i·19-s + (0.936 + 0.540i)20-s + (2.50 + 4.33i)22-s + (0.479 + 0.831i)23-s + ⋯ |
| L(s) = 1 | + (−0.657 − 0.379i)2-s + (−0.211 − 0.366i)4-s + (−0.494 + 0.285i)5-s + (0.336 + 0.194i)7-s + 1.08i·8-s + 0.433·10-s + (−1.21 − 0.702i)11-s + (−0.986 + 0.166i)13-s + (−0.147 − 0.255i)14-s + (0.198 − 0.344i)16-s + 0.115·17-s + 1.53i·19-s + (0.209 + 0.120i)20-s + (0.533 + 0.924i)22-s + (0.100 + 0.173i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.423 - 0.906i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 351 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.423 - 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.117472 + 0.184502i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.117472 + 0.184502i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 + (3.55 - 0.600i)T \) |
| good | 2 | \( 1 + (0.929 + 0.536i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (1.10 - 0.638i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.890 - 0.514i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (4.03 + 2.33i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 0.476T + 17T^{2} \) |
| 19 | \( 1 - 6.69iT - 19T^{2} \) |
| 23 | \( 1 + (-0.479 - 0.831i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.68 - 8.12i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.66 - 0.963i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 4.94iT - 37T^{2} \) |
| 41 | \( 1 + (-1.31 + 0.762i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.31 - 2.27i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.92 + 3.41i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 0.582T + 53T^{2} \) |
| 59 | \( 1 + (-3.64 + 2.10i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.71 - 8.16i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.01 - 1.16i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 1.35iT - 71T^{2} \) |
| 73 | \( 1 + 12.8iT - 73T^{2} \) |
| 79 | \( 1 + (-6.45 + 11.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-8.86 - 5.11i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 6.85iT - 89T^{2} \) |
| 97 | \( 1 + (14.9 + 8.63i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49152397624065668645651628686, −10.75542026643514280065853469173, −10.06034660388519832367381316817, −9.063181052943925197099183076629, −8.096241378932426767703891476435, −7.41871841394300432636313539799, −5.73877545041933829067682532198, −5.01850965765976278519980519247, −3.36340126708138891413867748308, −1.88642272930566346513235241934,
0.18002228307969266956766681449, 2.62691993294349135361846525543, 4.25661766999220990102497261482, 5.06591097159171828514152184324, 6.76701545641570275816453066077, 7.74587869559065440233256490369, 8.055584350032611075305931818504, 9.338919298396855173348786233301, 9.986431198611064166635422483219, 11.13066272786578468652982557649