L(s) = 1 | + (−1.73 − i)2-s + (−5.99 + 3.46i)3-s + (1.99 + 3.46i)4-s + 13.8·6-s + (−12.7 + 13.4i)7-s − 7.99i·8-s + (10.4 − 18.1i)9-s + (−18.6 − 32.3i)11-s + (−23.9 − 13.8i)12-s + 89.1i·13-s + (35.5 − 10.5i)14-s + (−8 + 13.8i)16-s + (−60.7 + 35.0i)17-s + (−36.2 + 20.9i)18-s + (−62.7 + 108. i)19-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−1.15 + 0.666i)3-s + (0.249 + 0.433i)4-s + 0.942·6-s + (−0.688 + 0.725i)7-s − 0.353i·8-s + (0.387 − 0.671i)9-s + (−0.512 − 0.886i)11-s + (−0.577 − 0.333i)12-s + 1.90i·13-s + (0.677 − 0.200i)14-s + (−0.125 + 0.216i)16-s + (−0.866 + 0.500i)17-s + (−0.475 + 0.274i)18-s + (−0.757 + 1.31i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.111 + 0.993i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.111 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.002960341874\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.002960341874\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.73 + i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (12.7 - 13.4i)T \) |
good | 3 | \( 1 + (5.99 - 3.46i)T + (13.5 - 23.3i)T^{2} \) |
| 11 | \( 1 + (18.6 + 32.3i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 89.1iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (60.7 - 35.0i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (62.7 - 108. i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (5.42 + 3.13i)T + (6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 95.4T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-108. - 188. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (182. + 105. i)T + (2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 12.2T + 6.89e4T^{2} \) |
| 43 | \( 1 - 131. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (315. + 182. i)T + (5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-431. + 249. i)T + (7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (179. + 310. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-77.3 + 133. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (58.4 - 33.7i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 517.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-584. + 337. i)T + (1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-465. + 806. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 1.43e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (168. - 291. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 179. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.65876784545969964724365767216, −10.71254127058286212331323997045, −10.12916293755177756745380997928, −9.050354155689729950353853089859, −8.369374773309781790448949163077, −6.61818885598831995949376305612, −6.11623345481482427516861809141, −4.82362222613093034826871144399, −3.63883025549874068251927509625, −2.01870807918413291602486797764,
0.00215216819112472543976515851, 0.78042451588569298422952682757, 2.67076128106222606406040634692, 4.66418772315135885069756686377, 5.70433273715271204607833129347, 6.71869238471266691893017288679, 7.23715357502155519397964834283, 8.297258988744657609201172010400, 9.645634319129849596051596357332, 10.48928059625314765543463197594