Properties

Label 4-350e2-1.1-c3e2-0-19
Degree $4$
Conductor $122500$
Sign $1$
Analytic cond. $426.450$
Root an. cond. $4.54430$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 5·3-s − 10·6-s + 28·7-s − 8·8-s + 27·9-s + 57·11-s + 140·13-s + 56·14-s − 16·16-s + 51·17-s + 54·18-s − 5·19-s − 140·21-s + 114·22-s + 69·23-s + 40·24-s + 280·26-s − 280·27-s + 228·29-s − 23·31-s − 285·33-s + 102·34-s − 253·37-s − 10·38-s − 700·39-s − 84·41-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.962·3-s − 0.680·6-s + 1.51·7-s − 0.353·8-s + 9-s + 1.56·11-s + 2.98·13-s + 1.06·14-s − 1/4·16-s + 0.727·17-s + 0.707·18-s − 0.0603·19-s − 1.45·21-s + 1.10·22-s + 0.625·23-s + 0.340·24-s + 2.11·26-s − 1.99·27-s + 1.45·29-s − 0.133·31-s − 1.50·33-s + 0.514·34-s − 1.12·37-s − 0.0426·38-s − 2.87·39-s − 0.319·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122500 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(122500\)    =    \(2^{2} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(426.450\)
Root analytic conductor: \(4.54430\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 122500,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.285487342\)
\(L(\frac12)\) \(\approx\) \(5.285487342\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 - p T + p^{2} T^{2} \)
5 \( 1 \)
7$C_2$ \( 1 - 4 p T + p^{3} T^{2} \)
good3$C_2^2$ \( 1 + 5 T - 2 T^{2} + 5 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 - 57 T + 1918 T^{2} - 57 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2$ \( ( 1 - 70 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( 1 - 3 p T - 8 p^{2} T^{2} - 3 p^{4} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 5 T - 6834 T^{2} + 5 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - 3 p T - 14 p^{2} T^{2} - 3 p^{4} T^{3} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 114 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 23 T - 29262 T^{2} + 23 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2^2$ \( 1 + 253 T + 13356 T^{2} + 253 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 42 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 124 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 201 T - 63422 T^{2} - 201 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2^2$ \( 1 + 393 T + 5572 T^{2} + 393 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 + 219 T - 157418 T^{2} + 219 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 709 T + 275700 T^{2} - 709 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 - 419 T - 125202 T^{2} - 419 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 96 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 313 T - 291048 T^{2} + 313 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2^2$ \( 1 + 461 T - 280518 T^{2} + 461 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2$ \( ( 1 - 588 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 1017 T + 329320 T^{2} - 1017 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 - 1834 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.21307607014289187109037072916, −11.10120509860722805764954056191, −10.60501630831194219221665983919, −10.16374787402305466313065997166, −9.238108530593104452575772928186, −9.050606310313651037760441213752, −8.418548346751709060095335691810, −8.117134297795076286777946332493, −7.38534328075704442680927363536, −6.78553316966676088688357338147, −6.16125339040493935205267338272, −6.07426615345231567469040801933, −5.35233417248031440227197322745, −4.86992004788935374197038202736, −4.26564316463339545885994796397, −3.72126794100720122011573819414, −3.47558361068407025944971424801, −1.95825256698028243988393907467, −1.16699332580538066909847275053, −1.03866875286324919153150668894, 1.03866875286324919153150668894, 1.16699332580538066909847275053, 1.95825256698028243988393907467, 3.47558361068407025944971424801, 3.72126794100720122011573819414, 4.26564316463339545885994796397, 4.86992004788935374197038202736, 5.35233417248031440227197322745, 6.07426615345231567469040801933, 6.16125339040493935205267338272, 6.78553316966676088688357338147, 7.38534328075704442680927363536, 8.117134297795076286777946332493, 8.418548346751709060095335691810, 9.050606310313651037760441213752, 9.238108530593104452575772928186, 10.16374787402305466313065997166, 10.60501630831194219221665983919, 11.10120509860722805764954056191, 11.21307607014289187109037072916

Graph of the $Z$-function along the critical line