Properties

Label 4-350e2-1.1-c3e2-0-17
Degree $4$
Conductor $122500$
Sign $1$
Analytic cond. $426.450$
Root an. cond. $4.54430$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 38·9-s + 120·11-s + 16·16-s + 104·19-s + 468·29-s − 608·31-s − 152·36-s − 108·41-s − 480·44-s − 49·49-s + 888·59-s + 76·61-s − 64·64-s − 1.44e3·71-s − 416·76-s + 1.61e3·79-s + 715·81-s − 2.29e3·89-s + 4.56e3·99-s + 3.90e3·101-s − 1.51e3·109-s − 1.87e3·116-s + 8.13e3·121-s + 2.43e3·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1/2·4-s + 1.40·9-s + 3.28·11-s + 1/4·16-s + 1.25·19-s + 2.99·29-s − 3.52·31-s − 0.703·36-s − 0.411·41-s − 1.64·44-s − 1/7·49-s + 1.95·59-s + 0.159·61-s − 1/8·64-s − 2.40·71-s − 0.627·76-s + 2.30·79-s + 0.980·81-s − 2.72·89-s + 4.62·99-s + 3.84·101-s − 1.33·109-s − 1.49·116-s + 6.11·121-s + 1.76·124-s + 0.000698·127-s + 0.000666·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 122500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 122500 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(122500\)    =    \(2^{2} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(426.450\)
Root analytic conductor: \(4.54430\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 122500,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.023266513\)
\(L(\frac12)\) \(\approx\) \(4.023266513\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{2} T^{2} \)
5 \( 1 \)
7$C_2$ \( 1 + p^{2} T^{2} \)
good3$C_2^2$ \( 1 - 38 T^{2} + p^{6} T^{4} \)
11$C_2$ \( ( 1 - 60 T + p^{3} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 2950 T^{2} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 8062 T^{2} + p^{6} T^{4} \)
19$C_2$ \( ( 1 - 52 T + p^{3} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 9934 T^{2} + p^{6} T^{4} \)
29$C_2$ \( ( 1 - 234 T + p^{3} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 304 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 90070 T^{2} + p^{6} T^{4} \)
41$C_2$ \( ( 1 + 54 T + p^{3} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 120598 T^{2} + p^{6} T^{4} \)
47$C_2^2$ \( 1 - 94750 T^{2} + p^{6} T^{4} \)
53$C_2^2$ \( 1 - 105910 T^{2} + p^{6} T^{4} \)
59$C_2$ \( ( 1 - 444 T + p^{3} T^{2} )^{2} \)
61$C_2$ \( ( 1 - 38 T + p^{3} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 374618 T^{2} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 720 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 p^{2} T^{2} + p^{6} T^{4} \)
79$C_2$ \( ( 1 - 808 T + p^{3} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 769030 T^{2} + p^{6} T^{4} \)
89$C_2$ \( ( 1 + 1146 T + p^{3} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 1820446 T^{2} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.37643093717761777502401391178, −10.86978330661889644476079503747, −10.14727476139620376238470723790, −9.882872038653941858531887170284, −9.409198073231484829188239194126, −8.966391104512517363372546779399, −8.797905911506400684017681057288, −8.041363228008842097029675423455, −7.28818648413645231568892132242, −6.88746191593390064988391444840, −6.75855832414526605873794208356, −5.98280822643636873047795661413, −5.41142698384425784560997634317, −4.54507723417369765018060943621, −4.32157689798628243884111798649, −3.61214636447142368286377655970, −3.36711450285520587675833666168, −1.91893742744381110289285519358, −1.30772850384035401753797417953, −0.860167930939699129271853885946, 0.860167930939699129271853885946, 1.30772850384035401753797417953, 1.91893742744381110289285519358, 3.36711450285520587675833666168, 3.61214636447142368286377655970, 4.32157689798628243884111798649, 4.54507723417369765018060943621, 5.41142698384425784560997634317, 5.98280822643636873047795661413, 6.75855832414526605873794208356, 6.88746191593390064988391444840, 7.28818648413645231568892132242, 8.041363228008842097029675423455, 8.797905911506400684017681057288, 8.966391104512517363372546779399, 9.409198073231484829188239194126, 9.882872038653941858531887170284, 10.14727476139620376238470723790, 10.86978330661889644476079503747, 11.37643093717761777502401391178

Graph of the $Z$-function along the critical line