L(s) = 1 | + 8·2-s − 2·3-s + 32·4-s − 16·6-s − 12·7-s + 96·8-s + 2·9-s + 40·11-s − 64·12-s − 16·13-s − 96·14-s + 264·16-s − 46·17-s + 16·18-s + 24·21-s + 320·22-s − 54·23-s − 192·24-s − 128·26-s + 28·27-s − 384·28-s − 208·31-s + 672·32-s − 80·33-s − 368·34-s + 64·36-s + 38·37-s + ⋯ |
L(s) = 1 | + 4·2-s − 2/3·3-s + 8·4-s − 8/3·6-s − 1.71·7-s + 12·8-s + 2/9·9-s + 3.63·11-s − 5.33·12-s − 1.23·13-s − 6.85·14-s + 33/2·16-s − 2.70·17-s + 8/9·18-s + 8/7·21-s + 14.5·22-s − 2.34·23-s − 8·24-s − 4.92·26-s + 1.03·27-s − 13.7·28-s − 6.70·31-s + 21·32-s − 2.42·33-s − 10.8·34-s + 16/9·36-s + 1.02·37-s + ⋯ |
Λ(s)=(=((216⋅532⋅716)s/2ΓC(s)16L(s)Λ(3−s)
Λ(s)=(=((216⋅532⋅716)s/2ΓC(s+1)16L(s)Λ(1−s)
Particular Values
L(23) |
≈ |
3.926014460 |
L(21) |
≈ |
3.926014460 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | (1−pT+pT2−p2T3+p2T4)4 |
| 5 | 1 |
| 7 | 1+12T+72T2+468T3−59T4−23880T5−172800T6−196440pT7−216060p2T8−196440p3T9−172800p4T10−23880p6T11−59p8T12+468p10T13+72p12T14+12p14T15+p16T16 |
good | 3 | 1+2T+2T2−28T3−2T4+86T5+568T6+58p2T7−1541pT8+74p4T9+11452T10+106106T11+135058T12+1589180T13+3237770T14−5097334T15−9280004T16−5097334p2T17+3237770p4T18+1589180p6T19+135058p8T20+106106p10T21+11452p12T22+74p18T23−1541p17T24+58p20T25+568p20T26+86p22T27−2p24T28−28p26T29+2p28T30+2p30T31+p32T32 |
| 11 | (1−20T+53T2+1868T3−19793T4+23808T5+812056T6+3236448T7−190136502T8+3236448p2T9+812056p4T10+23808p6T11−19793p8T12+1868p10T13+53p12T14−20p14T15+p16T16)2 |
| 13 | (1+8T+32T2+1112T3+33680T4+119592T5+497248T6+10550648T7+68709598T8+10550648p2T9+497248p4T10+119592p6T11+33680p8T12+1112p10T13+32p12T14+8p14T15+p16T16)2 |
| 17 | 1+46T+1058T2+15228T3+49795T4−3577952T5−101322910T6−1912395662T7−35538003267T8−729089246500T9−13614614462848T10−149191614412260T11+396919406750154T12+3079380260285984pT13+1230645459219027588T14+18772373078273663580T15+27⋯30T16+18772373078273663580p2T17+1230645459219027588p4T18+3079380260285984p7T19+396919406750154p8T20−149191614412260p10T21−13614614462848p12T22−729089246500p14T23−35538003267p16T24−1912395662p18T25−101322910p20T26−3577952p22T27+49795p24T28+15228p26T29+1058p28T30+46p30T31+p32T32 |
| 19 | 1+962T2+285903T4−9599234T6−15336277051T8+2324255772132T10+984840646865914T12−821244130299946144T14−53⋯82T16−821244130299946144p4T18+984840646865914p8T20+2324255772132p12T22−15336277051p16T24−9599234p20T26+285903p24T28+962p28T30+p32T32 |
| 23 | 1+54T+1458T2+41404T3+1531542T4+51187722T5+1388294360T6+34788210422T7+978568184441T8+28666106605246T9+745448729152316T10+17609421034026766T11+432143271417763898T12+11387865059627737708T13+28⋯34T14+63⋯38T15+13⋯36T16+63⋯38p2T17+28⋯34p4T18+11387865059627737708p6T19+432143271417763898p8T20+17609421034026766p10T21+745448729152316p12T22+28666106605246p14T23+978568184441p16T24+34788210422p18T25+1388294360p20T26+51187722p22T27+1531542p24T28+41404p26T29+1458p28T30+54p30T31+p32T32 |
| 29 | (1−4830T2+11400705T4−16870918974T6+17005870320740T8−16870918974p4T10+11400705p8T12−4830p12T14+p16T16)2 |
| 31 | (1+104T+3335T2+80216T3+6958945T4+299604368T5+5519548642T6+232310443200T7+11482603425294T8+232310443200p2T9+5519548642p4T10+299604368p6T11+6958945p8T12+80216p10T13+3335p12T14+104p14T15+p16T16)2 |
| 37 | 1−38T+722T2−36204T3+921843T4−54419040T5+2057717682T6−7359428170T7+1748254042141T8+98996461623124T9−5173840906504960T10+1619684158242788pT11−5578617333398806678T12−6554354740117891808T13−20⋯96T14+42⋯16T15−83⋯54T16+42⋯16p2T17−20⋯96p4T18−6554354740117891808p6T19−5578617333398806678p8T20+1619684158242788p11T21−5173840906504960p12T22+98996461623124p14T23+1748254042141p16T24−7359428170p18T25+2057717682p20T26−54419040p22T27+921843p24T28−36204p26T29+722p28T30−38p30T31+p32T32 |
| 41 | (1+18T+4237T2+27182T3+8225864T4+27182p2T5+4237p4T6+18p6T7+p8T8)4 |
| 43 | (1+72T+2592T2+12288T3−872859T4+17006160T5+3562391520T6−141343265880T7−11372920448860T8−141343265880p2T9+3562391520p4T10+17006160p6T11−872859p8T12+12288p10T13+2592p12T14+72p14T15+p16T16)2 |
| 47 | 1+46T+1058T2−161412T3−22698365T4−1010022752T5−9419259550T6+2715134508658T7+271485194118333T8+10484618609225180T9+53077017818847872T10−26010553538653727460T11−20⋯46T12−72⋯12T13−91⋯12T14+16⋯00T15+11⋯70T16+16⋯00p2T17−91⋯12p4T18−72⋯12p6T19−20⋯46p8T20−26010553538653727460p10T21+53077017818847872p12T22+10484618609225180p14T23+271485194118333p16T24+2715134508658p18T25−9419259550p20T26−1010022752p22T27−22698365p24T28−161412p26T29+1058p28T30+46p30T31+p32T32 |
| 53 | 1+30T+450T2−53260T3−13562801T4−264802000T5−422485750T6+1346619990690T7+94385910261585T8+3394198091700460T9+16961261878565400T10−11461088832223742300T11−43⋯94T12−38⋯80T13−65⋯00T14+11⋯00T15+39⋯74T16+11⋯00p2T17−65⋯00p4T18−38⋯80p6T19−43⋯94p8T20−11461088832223742300p10T21+16961261878565400p12T22+3394198091700460p14T23+94385910261585p16T24+1346619990690p18T25−422485750p20T26−264802000p22T27−13562801p24T28−53260p26T29+450p28T30+30p30T31+p32T32 |
| 59 | 1+6674T2−7729537T4−69884124210T6+388809824859333T8+851796830409747108T10−72⋯98T12−40⋯08T14+99⋯50T16−40⋯08p4T18−72⋯98p8T20+851796830409747108p12T22+388809824859333p16T24−69884124210p20T26−7729537p24T28+6674p28T30+p32T32 |
| 61 | (1+60T−8926T2−393256T3+57653141T4+1511546176T5−266254549814T6−2710779938676T7+1000035050441884T8−2710779938676p2T9−266254549814p4T10+1511546176p6T11+57653141p8T12−393256p10T13−8926p12T14+60p14T15+p16T16)2 |
| 67 | 1−74T+2738T2+587900T3−50988730T4+3339904986T5+65267378776T6−10012501185306T7+918173402551977T8+2374991498059262T9+329325818085928764T10−1284143109513809266T11+25⋯90T12−13⋯44T13+44⋯54T14+11⋯78T15−84⋯12T16+11⋯78p2T17+44⋯54p4T18−13⋯44p6T19+25⋯90p8T20−1284143109513809266p10T21+329325818085928764p12T22+2374991498059262p14T23+918173402551977p16T24−10012501185306p18T25+65267378776p20T26+3339904986p22T27−50988730p24T28+587900p26T29+2738p28T30−74p30T31+p32T32 |
| 71 | (1−4T+10238T2+37292T3+54945234T4+37292p2T5+10238p4T6−4p6T7+p8T8)4 |
| 73 | 1−54T+1458T2−376300T3−9032525T4−1427883664T5+161075984306T6−3449490767706T7+2006002204707837T8−28704897132082748T9+2397705340658794944T10−54⋯96T11−52⋯50T12−41⋯84T13+17⋯04T14−42⋯72T15+19⋯58T16−42⋯72p2T17+17⋯04p4T18−41⋯84p6T19−52⋯50p8T20−54⋯96p10T21+2397705340658794944p12T22−28704897132082748p14T23+2006002204707837p16T24−3449490767706p18T25+161075984306p20T26−1427883664p22T27−9032525p24T28−376300p26T29+1458p28T30−54p30T31+p32T32 |
| 79 | 1+42538T2+982751207T4+15945124184102T6+201431875816036549T8+20⋯92T10+18⋯34T12+14⋯24T14+93⋯90T16+14⋯24p4T18+18⋯34p8T20+20⋯92p12T22+201431875816036549p16T24+15945124184102p20T26+982751207p24T28+42538p28T30+p32T32 |
| 83 | (1+32T+512T2−252712T3−42882475T4+1371597568T5+97778626848T6+7242029223592T7+506959325886468T8+7242029223592p2T9+97778626848p4T10+1371597568p6T11−42882475p8T12−252712p10T13+512p12T14+32p14T15+p16T16)2 |
| 89 | 1+32552T2+612475958T4+7153003757936T6+52449920499191449T8+12⋯92T10−24⋯66T12−42⋯64T14−40⋯12T16−42⋯64p4T18−24⋯66p8T20+12⋯92p12T22+52449920499191449p16T24+7153003757936p20T26+612475958p24T28+32552p28T30+p32T32 |
| 97 | (1+68T+2312T2−258100T3−260409124T4−11295624444T5−132728762504T6+78472536305132T7+30681693645016390T8+78472536305132p2T9−132728762504p4T10−11295624444p6T11−260409124p8T12−258100p10T13+2312p12T14+68p14T15+p16T16)2 |
show more | |
show less | |
L(s)=p∏ j=1∏32(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.01307807732938402045314332677, −2.99653379307592492214321392124, −2.97114079215687035321242641359, −2.86088903464508881917130250408, −2.72258284216068091004220047778, −2.60659435539921888578166445346, −2.28630148068930637446954861760, −2.22521932024942430720084467704, −2.10576688455264223440229481494, −1.97446962325651689153871585845, −1.90158932566270721751815637562, −1.86891463511483541839670015134, −1.86520926195608365142348070494, −1.78966940463849846455120417345, −1.73156284992252938926146584433, −1.55572566885583637016576085585, −1.51625050112658521325803460433, −1.36525816149981641074589550976, −1.11757500767264879902756466459, −0.927076026138612437754517464481, −0.67146317879544329990780575248, −0.57433651463646520564403538208, −0.39671176946970811038469733563, −0.22078123416638756730545541016, −0.06446521100032377221072541871,
0.06446521100032377221072541871, 0.22078123416638756730545541016, 0.39671176946970811038469733563, 0.57433651463646520564403538208, 0.67146317879544329990780575248, 0.927076026138612437754517464481, 1.11757500767264879902756466459, 1.36525816149981641074589550976, 1.51625050112658521325803460433, 1.55572566885583637016576085585, 1.73156284992252938926146584433, 1.78966940463849846455120417345, 1.86520926195608365142348070494, 1.86891463511483541839670015134, 1.90158932566270721751815637562, 1.97446962325651689153871585845, 2.10576688455264223440229481494, 2.22521932024942430720084467704, 2.28630148068930637446954861760, 2.60659435539921888578166445346, 2.72258284216068091004220047778, 2.86088903464508881917130250408, 2.97114079215687035321242641359, 2.99653379307592492214321392124, 3.01307807732938402045314332677
Plot not available for L-functions of degree greater than 10.