Properties

Label 2-350-25.9-c1-0-12
Degree $2$
Conductor $350$
Sign $0.628 + 0.777i$
Analytic cond. $2.79476$
Root an. cond. $1.67175$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.587 − 0.809i)2-s + (2.84 − 0.923i)3-s + (−0.309 − 0.951i)4-s + (−0.152 + 2.23i)5-s + (0.923 − 2.84i)6-s + i·7-s + (−0.951 − 0.309i)8-s + (4.79 − 3.48i)9-s + (1.71 + 1.43i)10-s + (−2.02 − 1.46i)11-s + (−1.75 − 2.41i)12-s + (−0.572 − 0.788i)13-s + (0.809 + 0.587i)14-s + (1.62 + 6.48i)15-s + (−0.809 + 0.587i)16-s + (1.56 + 0.509i)17-s + ⋯
L(s)  = 1  + (0.415 − 0.572i)2-s + (1.64 − 0.533i)3-s + (−0.154 − 0.475i)4-s + (−0.0682 + 0.997i)5-s + (0.376 − 1.16i)6-s + 0.377i·7-s + (−0.336 − 0.109i)8-s + (1.59 − 1.16i)9-s + (0.542 + 0.453i)10-s + (−0.609 − 0.442i)11-s + (−0.507 − 0.697i)12-s + (−0.158 − 0.218i)13-s + (0.216 + 0.157i)14-s + (0.419 + 1.67i)15-s + (−0.202 + 0.146i)16-s + (0.380 + 0.123i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.628 + 0.777i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.628 + 0.777i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(350\)    =    \(2 \cdot 5^{2} \cdot 7\)
Sign: $0.628 + 0.777i$
Analytic conductor: \(2.79476\)
Root analytic conductor: \(1.67175\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{350} (309, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 350,\ (\ :1/2),\ 0.628 + 0.777i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.27899 - 1.08775i\)
\(L(\frac12)\) \(\approx\) \(2.27899 - 1.08775i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.587 + 0.809i)T \)
5 \( 1 + (0.152 - 2.23i)T \)
7 \( 1 - iT \)
good3 \( 1 + (-2.84 + 0.923i)T + (2.42 - 1.76i)T^{2} \)
11 \( 1 + (2.02 + 1.46i)T + (3.39 + 10.4i)T^{2} \)
13 \( 1 + (0.572 + 0.788i)T + (-4.01 + 12.3i)T^{2} \)
17 \( 1 + (-1.56 - 0.509i)T + (13.7 + 9.99i)T^{2} \)
19 \( 1 + (-1.61 + 4.98i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (3.90 - 5.37i)T + (-7.10 - 21.8i)T^{2} \)
29 \( 1 + (-0.766 - 2.35i)T + (-23.4 + 17.0i)T^{2} \)
31 \( 1 + (2.67 - 8.24i)T + (-25.0 - 18.2i)T^{2} \)
37 \( 1 + (6.73 + 9.27i)T + (-11.4 + 35.1i)T^{2} \)
41 \( 1 + (6.96 - 5.05i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 - 5.97iT - 43T^{2} \)
47 \( 1 + (-3.71 + 1.20i)T + (38.0 - 27.6i)T^{2} \)
53 \( 1 + (-2.64 + 0.859i)T + (42.8 - 31.1i)T^{2} \)
59 \( 1 + (-8.09 + 5.88i)T + (18.2 - 56.1i)T^{2} \)
61 \( 1 + (1.99 + 1.44i)T + (18.8 + 58.0i)T^{2} \)
67 \( 1 + (-9.00 - 2.92i)T + (54.2 + 39.3i)T^{2} \)
71 \( 1 + (0.311 + 0.959i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (-8.56 + 11.7i)T + (-22.5 - 69.4i)T^{2} \)
79 \( 1 + (-0.690 - 2.12i)T + (-63.9 + 46.4i)T^{2} \)
83 \( 1 + (3.45 + 1.12i)T + (67.1 + 48.7i)T^{2} \)
89 \( 1 + (14.0 + 10.2i)T + (27.5 + 84.6i)T^{2} \)
97 \( 1 + (-1.17 + 0.380i)T + (78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.40777734443100355864365553616, −10.39374637914886753825718235701, −9.510366012646536519955580088076, −8.580062653374886614909563287094, −7.62674417002781852462643082602, −6.79366690762516458534869529575, −5.35655621762122769653329075548, −3.56884592536747180474563431316, −2.99982515070481123521360261513, −1.95801266190515808898824792820, 2.17704064235041209518068228085, 3.68293965639236660770192640216, 4.39421940008948699367763780107, 5.49526396683035177361477750348, 7.18095511750906198614391596670, 8.116610922730353441450576918049, 8.499840188572966820258565215539, 9.684890472172757438453395105260, 10.18773184348613373481775175598, 11.98863011434235334309085402758

Graph of the $Z$-function along the critical line