Properties

 Degree 2 Conductor $2 \cdot 5^{2} \cdot 7$ Sign $0.447 + 0.894i$ Motivic weight 1 Primitive yes Self-dual no Analytic rank 0

Related objects

Dirichlet series

 L(s)  = 1 + i·2-s − 2i·3-s − 4-s + 2·6-s − i·7-s − i·8-s − 9-s + 2i·12-s − 4i·13-s + 14-s + 16-s − 6i·17-s − i·18-s − 2·19-s − 2·21-s + ⋯
 L(s)  = 1 + 0.707i·2-s − 1.15i·3-s − 0.5·4-s + 0.816·6-s − 0.377i·7-s − 0.353i·8-s − 0.333·9-s + 0.577i·12-s − 1.10i·13-s + 0.267·14-s + 0.250·16-s − 1.45i·17-s − 0.235i·18-s − 0.458·19-s − 0.436·21-s + ⋯

Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

 $$d$$ = $$2$$ $$N$$ = $$350$$    =    $$2 \cdot 5^{2} \cdot 7$$ $$\varepsilon$$ = $0.447 + 0.894i$ motivic weight = $$1$$ character : $\chi_{350} (99, \cdot )$ primitive : yes self-dual : no analytic rank = $$0$$ Selberg data = $$(2,\ 350,\ (\ :1/2),\ 0.447 + 0.894i)$$ $$L(1)$$ $$\approx$$ $$1.00849 - 0.623283i$$ $$L(\frac12)$$ $$\approx$$ $$1.00849 - 0.623283i$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$where, for $p \notin \{2,\;5,\;7\}$,$$F_p(T)$$ is a polynomial of degree 2. If $p \in \{2,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 $$1 - iT$$
5 $$1$$
7 $$1 + iT$$
good3 $$1 + 2iT - 3T^{2}$$
11 $$1 + 11T^{2}$$
13 $$1 + 4iT - 13T^{2}$$
17 $$1 + 6iT - 17T^{2}$$
19 $$1 + 2T + 19T^{2}$$
23 $$1 - 23T^{2}$$
29 $$1 - 6T + 29T^{2}$$
31 $$1 + 4T + 31T^{2}$$
37 $$1 + 2iT - 37T^{2}$$
41 $$1 - 6T + 41T^{2}$$
43 $$1 - 8iT - 43T^{2}$$
47 $$1 - 12iT - 47T^{2}$$
53 $$1 - 6iT - 53T^{2}$$
59 $$1 - 6T + 59T^{2}$$
61 $$1 - 8T + 61T^{2}$$
67 $$1 - 4iT - 67T^{2}$$
71 $$1 + 71T^{2}$$
73 $$1 - 2iT - 73T^{2}$$
79 $$1 + 8T + 79T^{2}$$
83 $$1 + 6iT - 83T^{2}$$
89 $$1 - 6T + 89T^{2}$$
97 $$1 - 10iT - 97T^{2}$$
\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}