Properties

Label 2-35-1.1-c7-0-12
Degree $2$
Conductor $35$
Sign $-1$
Analytic cond. $10.9334$
Root an. cond. $3.30658$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14.6·2-s − 54.7·3-s + 86.1·4-s + 125·5-s − 801.·6-s − 343·7-s − 612.·8-s + 815.·9-s + 1.82e3·10-s − 6.47e3·11-s − 4.71e3·12-s − 1.16e4·13-s − 5.01e3·14-s − 6.84e3·15-s − 1.99e4·16-s + 1.34e4·17-s + 1.19e4·18-s + 3.49e4·19-s + 1.07e4·20-s + 1.87e4·21-s − 9.47e4·22-s + 7.78e4·23-s + 3.35e4·24-s + 1.56e4·25-s − 1.70e5·26-s + 7.51e4·27-s − 2.95e4·28-s + ⋯
L(s)  = 1  + 1.29·2-s − 1.17·3-s + 0.672·4-s + 0.447·5-s − 1.51·6-s − 0.377·7-s − 0.423·8-s + 0.373·9-s + 0.578·10-s − 1.46·11-s − 0.788·12-s − 1.47·13-s − 0.488·14-s − 0.524·15-s − 1.22·16-s + 0.664·17-s + 0.482·18-s + 1.16·19-s + 0.300·20-s + 0.442·21-s − 1.89·22-s + 1.33·23-s + 0.495·24-s + 0.199·25-s − 1.90·26-s + 0.734·27-s − 0.254·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(10.9334\)
Root analytic conductor: \(3.30658\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 125T \)
7 \( 1 + 343T \)
good2 \( 1 - 14.6T + 128T^{2} \)
3 \( 1 + 54.7T + 2.18e3T^{2} \)
11 \( 1 + 6.47e3T + 1.94e7T^{2} \)
13 \( 1 + 1.16e4T + 6.27e7T^{2} \)
17 \( 1 - 1.34e4T + 4.10e8T^{2} \)
19 \( 1 - 3.49e4T + 8.93e8T^{2} \)
23 \( 1 - 7.78e4T + 3.40e9T^{2} \)
29 \( 1 + 2.21e5T + 1.72e10T^{2} \)
31 \( 1 + 2.32e4T + 2.75e10T^{2} \)
37 \( 1 + 4.22e5T + 9.49e10T^{2} \)
41 \( 1 - 1.91e5T + 1.94e11T^{2} \)
43 \( 1 - 3.10e5T + 2.71e11T^{2} \)
47 \( 1 + 2.40e5T + 5.06e11T^{2} \)
53 \( 1 + 1.06e6T + 1.17e12T^{2} \)
59 \( 1 - 4.51e5T + 2.48e12T^{2} \)
61 \( 1 + 8.31e5T + 3.14e12T^{2} \)
67 \( 1 - 2.26e6T + 6.06e12T^{2} \)
71 \( 1 + 2.22e6T + 9.09e12T^{2} \)
73 \( 1 - 4.99e6T + 1.10e13T^{2} \)
79 \( 1 + 2.72e6T + 1.92e13T^{2} \)
83 \( 1 + 6.38e6T + 2.71e13T^{2} \)
89 \( 1 + 7.32e6T + 4.42e13T^{2} \)
97 \( 1 + 2.38e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.25088828195067961566883804782, −12.98908326191473681033799700492, −12.29213353332133251620020554844, −11.03722773545208182582551190736, −9.650193556651075570337320322616, −7.17471755688965879825259971910, −5.53377260863159059873142106178, −5.11756419308441292598345810012, −2.90705316331124143992474431059, 0, 2.90705316331124143992474431059, 5.11756419308441292598345810012, 5.53377260863159059873142106178, 7.17471755688965879825259971910, 9.650193556651075570337320322616, 11.03722773545208182582551190736, 12.29213353332133251620020554844, 12.98908326191473681033799700492, 14.25088828195067961566883804782

Graph of the $Z$-function along the critical line