Properties

Label 2-35-1.1-c5-0-7
Degree $2$
Conductor $35$
Sign $1$
Analytic cond. $5.61343$
Root an. cond. $2.36926$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.91·2-s + 13.7·3-s + 47.5·4-s − 25·5-s + 122.·6-s + 49·7-s + 138.·8-s − 53.0·9-s − 222.·10-s − 187.·11-s + 655.·12-s + 255.·13-s + 437.·14-s − 344.·15-s − 283.·16-s − 1.10e3·17-s − 473.·18-s + 2.27e3·19-s − 1.18e3·20-s + 675.·21-s − 1.67e3·22-s − 475.·23-s + 1.91e3·24-s + 625·25-s + 2.28e3·26-s − 4.08e3·27-s + 2.33e3·28-s + ⋯
L(s)  = 1  + 1.57·2-s + 0.884·3-s + 1.48·4-s − 0.447·5-s + 1.39·6-s + 0.377·7-s + 0.767·8-s − 0.218·9-s − 0.705·10-s − 0.468·11-s + 1.31·12-s + 0.419·13-s + 0.595·14-s − 0.395·15-s − 0.276·16-s − 0.926·17-s − 0.344·18-s + 1.44·19-s − 0.664·20-s + 0.334·21-s − 0.738·22-s − 0.187·23-s + 0.678·24-s + 0.200·25-s + 0.661·26-s − 1.07·27-s + 0.561·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $1$
Analytic conductor: \(5.61343\)
Root analytic conductor: \(2.36926\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.967358050\)
\(L(\frac12)\) \(\approx\) \(3.967358050\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
7 \( 1 - 49T \)
good2 \( 1 - 8.91T + 32T^{2} \)
3 \( 1 - 13.7T + 243T^{2} \)
11 \( 1 + 187.T + 1.61e5T^{2} \)
13 \( 1 - 255.T + 3.71e5T^{2} \)
17 \( 1 + 1.10e3T + 1.41e6T^{2} \)
19 \( 1 - 2.27e3T + 2.47e6T^{2} \)
23 \( 1 + 475.T + 6.43e6T^{2} \)
29 \( 1 + 3.04e3T + 2.05e7T^{2} \)
31 \( 1 - 4.77e3T + 2.86e7T^{2} \)
37 \( 1 + 1.36e4T + 6.93e7T^{2} \)
41 \( 1 - 1.25e4T + 1.15e8T^{2} \)
43 \( 1 - 2.39e4T + 1.47e8T^{2} \)
47 \( 1 - 2.09e4T + 2.29e8T^{2} \)
53 \( 1 - 2.25e4T + 4.18e8T^{2} \)
59 \( 1 - 1.40e4T + 7.14e8T^{2} \)
61 \( 1 + 3.61e3T + 8.44e8T^{2} \)
67 \( 1 + 3.34e4T + 1.35e9T^{2} \)
71 \( 1 + 4.15e4T + 1.80e9T^{2} \)
73 \( 1 - 2.92e3T + 2.07e9T^{2} \)
79 \( 1 - 2.23e4T + 3.07e9T^{2} \)
83 \( 1 - 4.26e4T + 3.93e9T^{2} \)
89 \( 1 + 1.27e5T + 5.58e9T^{2} \)
97 \( 1 - 1.32e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.22300823653396129235520446996, −14.10123988759601133171469416168, −13.50478003827753772307817116974, −12.14326984075404618029475103325, −11.05028075719653888740093359956, −8.910048728507906840925167122442, −7.43451404251766750846190762537, −5.58565587756984507262052215154, −4.02159212380100377408792884699, −2.66426719738050585453327304590, 2.66426719738050585453327304590, 4.02159212380100377408792884699, 5.58565587756984507262052215154, 7.43451404251766750846190762537, 8.910048728507906840925167122442, 11.05028075719653888740093359956, 12.14326984075404618029475103325, 13.50478003827753772307817116974, 14.10123988759601133171469416168, 15.22300823653396129235520446996

Graph of the $Z$-function along the critical line