Properties

Label 2-35-1.1-c5-0-8
Degree $2$
Conductor $35$
Sign $-1$
Analytic cond. $5.61343$
Root an. cond. $2.36926$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.53·2-s + 13.5·3-s − 19.5·4-s − 25·5-s − 48·6-s − 49·7-s + 181.·8-s − 58.2·9-s + 88.2·10-s − 691.·11-s − 265.·12-s − 502.·13-s + 173.·14-s − 339.·15-s − 17.5·16-s − 991.·17-s + 205.·18-s + 661.·19-s + 488.·20-s − 666.·21-s + 2.44e3·22-s + 3.41e3·23-s + 2.47e3·24-s + 625·25-s + 1.77e3·26-s − 4.09e3·27-s + 957.·28-s + ⋯
L(s)  = 1  − 0.624·2-s + 0.872·3-s − 0.610·4-s − 0.447·5-s − 0.544·6-s − 0.377·7-s + 1.00·8-s − 0.239·9-s + 0.279·10-s − 1.72·11-s − 0.532·12-s − 0.824·13-s + 0.235·14-s − 0.389·15-s − 0.0171·16-s − 0.831·17-s + 0.149·18-s + 0.420·19-s + 0.272·20-s − 0.329·21-s + 1.07·22-s + 1.34·23-s + 0.876·24-s + 0.200·25-s + 0.514·26-s − 1.08·27-s + 0.230·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35\)    =    \(5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(5.61343\)
Root analytic conductor: \(2.36926\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
7 \( 1 + 49T \)
good2 \( 1 + 3.53T + 32T^{2} \)
3 \( 1 - 13.5T + 243T^{2} \)
11 \( 1 + 691.T + 1.61e5T^{2} \)
13 \( 1 + 502.T + 3.71e5T^{2} \)
17 \( 1 + 991.T + 1.41e6T^{2} \)
19 \( 1 - 661.T + 2.47e6T^{2} \)
23 \( 1 - 3.41e3T + 6.43e6T^{2} \)
29 \( 1 - 6.75e3T + 2.05e7T^{2} \)
31 \( 1 + 3.92e3T + 2.86e7T^{2} \)
37 \( 1 - 627.T + 6.93e7T^{2} \)
41 \( 1 - 1.62e4T + 1.15e8T^{2} \)
43 \( 1 + 1.72e4T + 1.47e8T^{2} \)
47 \( 1 + 4.29e3T + 2.29e8T^{2} \)
53 \( 1 + 2.59e4T + 4.18e8T^{2} \)
59 \( 1 - 8.90e3T + 7.14e8T^{2} \)
61 \( 1 + 4.89e4T + 8.44e8T^{2} \)
67 \( 1 + 4.25e3T + 1.35e9T^{2} \)
71 \( 1 - 1.89e4T + 1.80e9T^{2} \)
73 \( 1 - 1.01e4T + 2.07e9T^{2} \)
79 \( 1 + 9.69e4T + 3.07e9T^{2} \)
83 \( 1 - 7.07e4T + 3.93e9T^{2} \)
89 \( 1 - 4.24e3T + 5.58e9T^{2} \)
97 \( 1 + 1.04e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.94808582298613532937978421080, −13.69119822940869710538499628832, −12.78101222722675327510565152481, −10.83543312987410794957736278271, −9.557668410900609873242043847864, −8.457254639796722827613336821948, −7.49083378784061391460195292367, −4.90416902353730511480470986203, −2.86905804352889549176612019967, 0, 2.86905804352889549176612019967, 4.90416902353730511480470986203, 7.49083378784061391460195292367, 8.457254639796722827613336821948, 9.557668410900609873242043847864, 10.83543312987410794957736278271, 12.78101222722675327510565152481, 13.69119822940869710538499628832, 14.94808582298613532937978421080

Graph of the $Z$-function along the critical line