Properties

Label 4-35e2-1.1-c3e2-0-1
Degree $4$
Conductor $1225$
Sign $1$
Analytic cond. $4.26450$
Root an. cond. $1.43703$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 2·3-s + 34·4-s − 10·5-s + 16·6-s − 14·7-s + 96·8-s − 19·9-s − 80·10-s − 14·11-s + 68·12-s + 50·13-s − 112·14-s − 20·15-s + 196·16-s − 50·17-s − 152·18-s + 36·19-s − 340·20-s − 28·21-s − 112·22-s + 244·23-s + 192·24-s + 75·25-s + 400·26-s − 30·27-s − 476·28-s + ⋯
L(s)  = 1  + 2.82·2-s + 0.384·3-s + 17/4·4-s − 0.894·5-s + 1.08·6-s − 0.755·7-s + 4.24·8-s − 0.703·9-s − 2.52·10-s − 0.383·11-s + 1.63·12-s + 1.06·13-s − 2.13·14-s − 0.344·15-s + 3.06·16-s − 0.713·17-s − 1.99·18-s + 0.434·19-s − 3.80·20-s − 0.290·21-s − 1.08·22-s + 2.21·23-s + 1.63·24-s + 3/5·25-s + 3.01·26-s − 0.213·27-s − 3.21·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1225 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1225\)    =    \(5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(4.26450\)
Root analytic conductor: \(1.43703\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1225,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.223089146\)
\(L(\frac12)\) \(\approx\) \(5.223089146\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_1$ \( ( 1 + p T )^{2} \)
7$C_1$ \( ( 1 + p T )^{2} \)
good2$D_{4}$ \( 1 - p^{3} T + 15 p T^{2} - p^{6} T^{3} + p^{6} T^{4} \)
3$D_{4}$ \( 1 - 2 T + 23 T^{2} - 2 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 14 T + 663 T^{2} + 14 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 50 T + 4987 T^{2} - 50 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 + 50 T + 387 p T^{2} + 50 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 - 36 T + 10170 T^{2} - 36 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 - 244 T + 29970 T^{2} - 244 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 + 26 T + 47795 T^{2} + 26 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 + 120 T - 1618 T^{2} + 120 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 - 564 T + 173630 T^{2} - 564 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 + 8 p T + 133986 T^{2} + 8 p^{4} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 260 T + 166666 T^{2} + 260 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 350 T + 203423 T^{2} + 350 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 + 56 T + 265770 T^{2} + 56 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2$ \( ( 1 + 616 T + p^{3} T^{2} )^{2} \)
61$D_{4}$ \( 1 - 336 T + 458858 T^{2} - 336 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 + 152 T + 599110 T^{2} + 152 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 + 952 T + p^{3} T^{2} )^{2} \)
73$D_{4}$ \( 1 - 676 T + 655606 T^{2} - 676 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 1014 T + 1120119 T^{2} - 1014 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 + 376 T + 458918 T^{2} + 376 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 + 216 T + 1417730 T^{2} + 216 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 2742 T + 3608187 T^{2} - 2742 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.96937458453203323925251089762, −15.36080296278189108756728642990, −14.80723333190656598792553549478, −14.78087386236095405578224077907, −13.65726969307803711827536505876, −13.46188577452627963038114562248, −12.93596040644060945302808781536, −12.55080475015299726901144508149, −11.49866612153758956587525004771, −11.43979415134699257168741039487, −10.63887138374207418976842958442, −9.307324458736904324545130481123, −8.534471157471106185264744217798, −7.52985839123901122492131590224, −6.59579649322808839307610539272, −5.99925029535903665821127577129, −5.05268532606638870053803240027, −4.37067012632211651815365282126, −3.21748054548271073994916860722, −3.10872113048333480481099347312, 3.10872113048333480481099347312, 3.21748054548271073994916860722, 4.37067012632211651815365282126, 5.05268532606638870053803240027, 5.99925029535903665821127577129, 6.59579649322808839307610539272, 7.52985839123901122492131590224, 8.534471157471106185264744217798, 9.307324458736904324545130481123, 10.63887138374207418976842958442, 11.43979415134699257168741039487, 11.49866612153758956587525004771, 12.55080475015299726901144508149, 12.93596040644060945302808781536, 13.46188577452627963038114562248, 13.65726969307803711827536505876, 14.78087386236095405578224077907, 14.80723333190656598792553549478, 15.36080296278189108756728642990, 15.96937458453203323925251089762

Graph of the $Z$-function along the critical line