| L(s) = 1 | + (−2 − 3.46i)2-s + (−7.99 + 13.8i)4-s + (−34.6 − 59.9i)5-s − 195.·7-s + 63.9·8-s + (−138. + 239. i)10-s + 137.·11-s + (−398. + 689. i)13-s + (390. + 676. i)14-s + (−128 − 221. i)16-s + (784. + 1.35e3i)17-s + (1.55e3 + 206. i)19-s + 1.10e3·20-s + (−274. − 476. i)22-s + (−208. + 361. i)23-s + ⋯ |
| L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.619 − 1.07i)5-s − 1.50·7-s + 0.353·8-s + (−0.437 + 0.758i)10-s + 0.342·11-s + (−0.653 + 1.13i)13-s + (0.532 + 0.922i)14-s + (−0.125 − 0.216i)16-s + (0.658 + 1.14i)17-s + (0.991 + 0.131i)19-s + 0.619·20-s + (−0.121 − 0.209i)22-s + (−0.0822 + 0.142i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 342 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.178 + 0.983i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 342 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.178 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(3)\) |
\(\approx\) |
\(0.7751477541\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7751477541\) |
| \(L(\frac{7}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (2 + 3.46i)T \) |
| 3 | \( 1 \) |
| 19 | \( 1 + (-1.55e3 - 206. i)T \) |
| good | 5 | \( 1 + (34.6 + 59.9i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 7 | \( 1 + 195.T + 1.68e4T^{2} \) |
| 11 | \( 1 - 137.T + 1.61e5T^{2} \) |
| 13 | \( 1 + (398. - 689. i)T + (-1.85e5 - 3.21e5i)T^{2} \) |
| 17 | \( 1 + (-784. - 1.35e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 23 | \( 1 + (208. - 361. i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + (155. - 270. i)T + (-1.02e7 - 1.77e7i)T^{2} \) |
| 31 | \( 1 + 1.03e4T + 2.86e7T^{2} \) |
| 37 | \( 1 - 3.32e3T + 6.93e7T^{2} \) |
| 41 | \( 1 + (2.54e3 + 4.39e3i)T + (-5.79e7 + 1.00e8i)T^{2} \) |
| 43 | \( 1 + (4.08e3 + 7.08e3i)T + (-7.35e7 + 1.27e8i)T^{2} \) |
| 47 | \( 1 + (-1.01e3 + 1.76e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-6.07e3 + 1.05e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (2.36e3 + 4.09e3i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (4.31e3 - 7.46e3i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (6.73e3 - 1.16e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + (3.50e4 + 6.07e4i)T + (-9.02e8 + 1.56e9i)T^{2} \) |
| 73 | \( 1 + (-9.04e3 - 1.56e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-4.40e4 - 7.62e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 - 1.15e5T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-1.29e4 + 2.24e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + (6.50e4 + 1.12e5i)T + (-4.29e9 + 7.43e9i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33643084828134895063968390552, −9.425217452986743639995706276942, −8.981951939197061819381459067616, −7.79616521358481498498353648182, −6.78884810030814128673057728076, −5.46080301855572447178234242565, −4.10870610375781083382642696813, −3.38755294729733599398665473240, −1.74061887459757789117814219567, −0.43211018797806734737815996635,
0.57675825619641987238508673830, 2.86928156431347748425530959534, 3.52484600355194843549637978329, 5.24767336821074943324129170346, 6.29586569584496994913196879148, 7.25445507410177248496439836535, 7.64613586181612336157896084838, 9.229458662249739198460658982856, 9.831178895800738939392510715271, 10.68296474310617743819869986453