L(s) = 1 | − 2-s + 2·7-s + 8-s + 4·11-s + 3·13-s − 2·14-s − 16-s + 4·17-s + 8·19-s − 4·22-s + 4·23-s + 5·25-s − 3·26-s − 6·31-s − 4·34-s − 10·37-s − 8·38-s + 4·41-s + 9·43-s − 4·46-s + 10·47-s − 11·49-s − 5·50-s − 4·53-s + 2·56-s − 14·59-s − 11·61-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.755·7-s + 0.353·8-s + 1.20·11-s + 0.832·13-s − 0.534·14-s − 1/4·16-s + 0.970·17-s + 1.83·19-s − 0.852·22-s + 0.834·23-s + 25-s − 0.588·26-s − 1.07·31-s − 0.685·34-s − 1.64·37-s − 1.29·38-s + 0.624·41-s + 1.37·43-s − 0.589·46-s + 1.45·47-s − 1.57·49-s − 0.707·50-s − 0.549·53-s + 0.267·56-s − 1.82·59-s − 1.40·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 116964 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 116964 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.428549112\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.428549112\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.54348307164942019598761102173, −11.25716029823693530957412458319, −10.73515255721021597639373978246, −10.58374644622505703347783348294, −9.629396660823084285906428724082, −9.418110536988220635410834132230, −9.034949659383026950616417339883, −8.639031928671348426855592035890, −7.88499860384502907608527076965, −7.70689965926038983256584618083, −7.05318714727489721208141843972, −6.66304521052953388567010465269, −5.84833753542444496259914943911, −5.37755673532302851801213209369, −4.87586858957521118499595655105, −4.10415229931038676578117562284, −3.48617559706665704132131698909, −2.89243811900855163697293673280, −1.44523947780977611155881925702, −1.22373116820263713944100213477,
1.22373116820263713944100213477, 1.44523947780977611155881925702, 2.89243811900855163697293673280, 3.48617559706665704132131698909, 4.10415229931038676578117562284, 4.87586858957521118499595655105, 5.37755673532302851801213209369, 5.84833753542444496259914943911, 6.66304521052953388567010465269, 7.05318714727489721208141843972, 7.70689965926038983256584618083, 7.88499860384502907608527076965, 8.639031928671348426855592035890, 9.034949659383026950616417339883, 9.418110536988220635410834132230, 9.629396660823084285906428724082, 10.58374644622505703347783348294, 10.73515255721021597639373978246, 11.25716029823693530957412458319, 11.54348307164942019598761102173