Properties

Label 8-342e4-1.1-c9e4-0-3
Degree $8$
Conductor $13680577296$
Sign $1$
Analytic cond. $9.62618\times 10^{8}$
Root an. cond. $13.2718$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 64·2-s + 2.56e3·4-s + 1.39e3·5-s + 1.23e4·7-s + 8.19e4·8-s + 8.92e4·10-s + 1.04e5·11-s + 1.20e5·13-s + 7.87e5·14-s + 2.29e6·16-s + 4.12e5·17-s + 5.21e5·19-s + 3.57e6·20-s + 6.67e6·22-s − 3.01e6·23-s + 1.94e6·25-s + 7.71e6·26-s + 3.15e7·28-s − 6.15e6·29-s + 1.27e7·31-s + 5.87e7·32-s + 2.63e7·34-s + 1.71e7·35-s + 2.05e7·37-s + 3.33e7·38-s + 1.14e8·40-s − 1.16e7·41-s + ⋯
L(s)  = 1  + 2.82·2-s + 5·4-s + 0.998·5-s + 1.93·7-s + 7.07·8-s + 2.82·10-s + 2.14·11-s + 1.17·13-s + 5.47·14-s + 35/4·16-s + 1.19·17-s + 0.917·19-s + 4.99·20-s + 6.07·22-s − 2.24·23-s + 0.996·25-s + 3.30·26-s + 9.68·28-s − 1.61·29-s + 2.48·31-s + 9.89·32-s + 3.38·34-s + 1.93·35-s + 1.79·37-s + 2.59·38-s + 7.05·40-s − 0.642·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(10-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 19^{4}\right)^{s/2} \, \Gamma_{\C}(s+9/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 19^{4}\)
Sign: $1$
Analytic conductor: \(9.62618\times 10^{8}\)
Root analytic conductor: \(13.2718\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 19^{4} ,\ ( \ : 9/2, 9/2, 9/2, 9/2 ),\ 1 )\)

Particular Values

\(L(5)\) \(\approx\) \(397.5113204\)
\(L(\frac12)\) \(\approx\) \(397.5113204\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - p^{4} T )^{4} \)
3 \( 1 \)
19$C_1$ \( ( 1 - p^{4} T )^{4} \)
good5$C_2 \wr S_4$ \( 1 - 279 p T - 206 p T^{2} - 65059389 p^{2} T^{3} + 62045170554 p^{3} T^{4} - 65059389 p^{11} T^{5} - 206 p^{19} T^{6} - 279 p^{28} T^{7} + p^{36} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 12307 T + 146953147 T^{2} - 177878821772 p T^{3} + 182915235883424 p^{2} T^{4} - 177878821772 p^{10} T^{5} + 146953147 p^{18} T^{6} - 12307 p^{27} T^{7} + p^{36} T^{8} \)
11$C_2 \wr S_4$ \( 1 - 104249 T + 12830631428 T^{2} - 70344030474447 p T^{3} + 49503846191918961558 T^{4} - 70344030474447 p^{10} T^{5} + 12830631428 p^{18} T^{6} - 104249 p^{27} T^{7} + p^{36} T^{8} \)
13$C_2 \wr S_4$ \( 1 - 120486 T + 11611428199 T^{2} - 1537985136135464 T^{3} + \)\(26\!\cdots\!96\)\( T^{4} - 1537985136135464 p^{9} T^{5} + 11611428199 p^{18} T^{6} - 120486 p^{27} T^{7} + p^{36} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 412139 T + 99978579665 T^{2} - 47122140457475886 T^{3} + \)\(22\!\cdots\!54\)\( T^{4} - 47122140457475886 p^{9} T^{5} + 99978579665 p^{18} T^{6} - 412139 p^{27} T^{7} + p^{36} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 3010300 T + 8067019202447 T^{2} + 26728667320812612 p^{2} T^{3} + \)\(22\!\cdots\!92\)\( T^{4} + 26728667320812612 p^{11} T^{5} + 8067019202447 p^{18} T^{6} + 3010300 p^{27} T^{7} + p^{36} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 6153240 T + 66652695791987 T^{2} + \)\(26\!\cdots\!04\)\( T^{3} + \)\(15\!\cdots\!08\)\( T^{4} + \)\(26\!\cdots\!04\)\( p^{9} T^{5} + 66652695791987 p^{18} T^{6} + 6153240 p^{27} T^{7} + p^{36} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 12774024 T + 157641860418028 T^{2} - \)\(10\!\cdots\!12\)\( T^{3} + \)\(69\!\cdots\!98\)\( T^{4} - \)\(10\!\cdots\!12\)\( p^{9} T^{5} + 157641860418028 p^{18} T^{6} - 12774024 p^{27} T^{7} + p^{36} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 20506048 T + 451640199111340 T^{2} - \)\(57\!\cdots\!32\)\( T^{3} + \)\(77\!\cdots\!30\)\( T^{4} - \)\(57\!\cdots\!32\)\( p^{9} T^{5} + 451640199111340 p^{18} T^{6} - 20506048 p^{27} T^{7} + p^{36} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 11620300 T + 777621524436344 T^{2} + \)\(46\!\cdots\!00\)\( T^{3} + \)\(29\!\cdots\!26\)\( T^{4} + \)\(46\!\cdots\!00\)\( p^{9} T^{5} + 777621524436344 p^{18} T^{6} + 11620300 p^{27} T^{7} + p^{36} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 7698327 T + 1116374999600644 T^{2} - \)\(20\!\cdots\!79\)\( T^{3} + \)\(59\!\cdots\!74\)\( T^{4} - \)\(20\!\cdots\!79\)\( p^{9} T^{5} + 1116374999600644 p^{18} T^{6} - 7698327 p^{27} T^{7} + p^{36} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 31581083 T + 59729788569388 p T^{2} - \)\(86\!\cdots\!23\)\( T^{3} + \)\(43\!\cdots\!46\)\( T^{4} - \)\(86\!\cdots\!23\)\( p^{9} T^{5} + 59729788569388 p^{19} T^{6} - 31581083 p^{27} T^{7} + p^{36} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 72549422 T + 9181124351782847 T^{2} + \)\(40\!\cdots\!96\)\( T^{3} + \)\(36\!\cdots\!60\)\( T^{4} + \)\(40\!\cdots\!96\)\( p^{9} T^{5} + 9181124351782847 p^{18} T^{6} + 72549422 p^{27} T^{7} + p^{36} T^{8} \)
59$C_2 \wr S_4$ \( 1 - 149234120 T + 38463872258171009 T^{2} - \)\(37\!\cdots\!70\)\( T^{3} + \)\(51\!\cdots\!56\)\( T^{4} - \)\(37\!\cdots\!70\)\( p^{9} T^{5} + 38463872258171009 p^{18} T^{6} - 149234120 p^{27} T^{7} + p^{36} T^{8} \)
61$C_2 \wr S_4$ \( 1 - 129004373 T + 36134043355765018 T^{2} - \)\(36\!\cdots\!19\)\( T^{3} + \)\(61\!\cdots\!14\)\( T^{4} - \)\(36\!\cdots\!19\)\( p^{9} T^{5} + 36134043355765018 p^{18} T^{6} - 129004373 p^{27} T^{7} + p^{36} T^{8} \)
67$C_2 \wr S_4$ \( 1 - 132595266 T + 50476271812135045 T^{2} - \)\(24\!\cdots\!06\)\( T^{3} + \)\(10\!\cdots\!12\)\( T^{4} - \)\(24\!\cdots\!06\)\( p^{9} T^{5} + 50476271812135045 p^{18} T^{6} - 132595266 p^{27} T^{7} + p^{36} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 47138482 T + 109274701906688168 T^{2} + \)\(43\!\cdots\!18\)\( T^{3} + \)\(54\!\cdots\!62\)\( T^{4} + \)\(43\!\cdots\!18\)\( p^{9} T^{5} + 109274701906688168 p^{18} T^{6} - 47138482 p^{27} T^{7} + p^{36} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 39332795 T + 147831632963514661 T^{2} - \)\(30\!\cdots\!82\)\( T^{3} + \)\(10\!\cdots\!82\)\( T^{4} - \)\(30\!\cdots\!82\)\( p^{9} T^{5} + 147831632963514661 p^{18} T^{6} + 39332795 p^{27} T^{7} + p^{36} T^{8} \)
79$C_2 \wr S_4$ \( 1 + 307010840 T + 250097675403470728 T^{2} + \)\(12\!\cdots\!20\)\( T^{3} + \)\(34\!\cdots\!42\)\( T^{4} + \)\(12\!\cdots\!20\)\( p^{9} T^{5} + 250097675403470728 p^{18} T^{6} + 307010840 p^{27} T^{7} + p^{36} T^{8} \)
83$C_2 \wr S_4$ \( 1 - 746568232 T + 900563380389680840 T^{2} - \)\(42\!\cdots\!92\)\( T^{3} + \)\(26\!\cdots\!54\)\( T^{4} - \)\(42\!\cdots\!92\)\( p^{9} T^{5} + 900563380389680840 p^{18} T^{6} - 746568232 p^{27} T^{7} + p^{36} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 286943482 T + 949493363525023412 T^{2} + \)\(20\!\cdots\!34\)\( T^{3} + \)\(42\!\cdots\!38\)\( T^{4} + \)\(20\!\cdots\!34\)\( p^{9} T^{5} + 949493363525023412 p^{18} T^{6} + 286943482 p^{27} T^{7} + p^{36} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 793519958 T - 696016064440921328 T^{2} - \)\(23\!\cdots\!78\)\( T^{3} + \)\(15\!\cdots\!70\)\( T^{4} - \)\(23\!\cdots\!78\)\( p^{9} T^{5} - 696016064440921328 p^{18} T^{6} - 793519958 p^{27} T^{7} + p^{36} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.66072699647676768909183738008, −6.30228613471389348058848428020, −6.12597908299984350063415784828, −5.92806259106801704497563829574, −5.84013763502533003157870277388, −5.43530087742591122076030713107, −5.22376610649983085642300903149, −4.98157440004016383156912116047, −4.89396958096990499637179915164, −4.21929088335523488518018377516, −4.17631339577523478572119771215, −4.08223257237114222143502629463, −3.99757524373103474477030928734, −3.43379220957452470449776892455, −3.22037851823063555309704514583, −2.93354652912195416958592280292, −2.75572793022163125029428570504, −2.11689852412173548414207659746, −2.02120870299943967303097752900, −1.73221095179325251578630845279, −1.68437361365050025780706512394, −1.28000202252395249419227974144, −0.924155047530396709910487651287, −0.863188125726608002332004254941, −0.55362306251487308276959061462, 0.55362306251487308276959061462, 0.863188125726608002332004254941, 0.924155047530396709910487651287, 1.28000202252395249419227974144, 1.68437361365050025780706512394, 1.73221095179325251578630845279, 2.02120870299943967303097752900, 2.11689852412173548414207659746, 2.75572793022163125029428570504, 2.93354652912195416958592280292, 3.22037851823063555309704514583, 3.43379220957452470449776892455, 3.99757524373103474477030928734, 4.08223257237114222143502629463, 4.17631339577523478572119771215, 4.21929088335523488518018377516, 4.89396958096990499637179915164, 4.98157440004016383156912116047, 5.22376610649983085642300903149, 5.43530087742591122076030713107, 5.84013763502533003157870277388, 5.92806259106801704497563829574, 6.12597908299984350063415784828, 6.30228613471389348058848428020, 6.66072699647676768909183738008

Graph of the $Z$-function along the critical line