Properties

Label 6-3381e3-1.1-c1e3-0-0
Degree $6$
Conductor $38648755341$
Sign $1$
Analytic cond. $19677.3$
Root an. cond. $5.19590$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 3·5-s + 8-s + 6·9-s + 6·11-s − 9·13-s + 9·15-s − 6·17-s + 6·19-s − 3·23-s − 3·24-s − 3·25-s − 10·27-s + 6·29-s + 18·31-s − 18·33-s + 6·37-s + 27·39-s − 3·40-s + 6·41-s − 9·43-s − 18·45-s − 18·47-s + 18·51-s + 3·53-s − 18·55-s − 18·57-s + ⋯
L(s)  = 1  − 1.73·3-s − 1.34·5-s + 0.353·8-s + 2·9-s + 1.80·11-s − 2.49·13-s + 2.32·15-s − 1.45·17-s + 1.37·19-s − 0.625·23-s − 0.612·24-s − 3/5·25-s − 1.92·27-s + 1.11·29-s + 3.23·31-s − 3.13·33-s + 0.986·37-s + 4.32·39-s − 0.474·40-s + 0.937·41-s − 1.37·43-s − 2.68·45-s − 2.62·47-s + 2.52·51-s + 0.412·53-s − 2.42·55-s − 2.38·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 7^{6} \cdot 23^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 7^{6} \cdot 23^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{3} \cdot 7^{6} \cdot 23^{3}\)
Sign: $1$
Analytic conductor: \(19677.3\)
Root analytic conductor: \(5.19590\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 3^{3} \cdot 7^{6} \cdot 23^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.4989053583\)
\(L(\frac12)\) \(\approx\) \(0.4989053583\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + T )^{3} \)
7 \( 1 \)
23$C_1$ \( ( 1 + T )^{3} \)
good2$D_{6}$ \( 1 - T^{3} + p^{3} T^{6} \)
5$S_4\times C_2$ \( 1 + 3 T + 12 T^{2} + 24 T^{3} + 12 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
11$S_4\times C_2$ \( 1 - 6 T + 30 T^{2} - 112 T^{3} + 30 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 + 9 T + 54 T^{2} + 240 T^{3} + 54 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 + 6 T + 42 T^{2} + 154 T^{3} + 42 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 - 6 T + 54 T^{2} - 208 T^{3} + 54 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 - 6 T + 42 T^{2} - 86 T^{3} + 42 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 - 18 T + 6 p T^{2} - 1244 T^{3} + 6 p^{2} T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 - 6 T + 66 T^{2} - 494 T^{3} + 66 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 - 6 T + 30 T^{2} + 98 T^{3} + 30 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 + 9 T + 126 T^{2} + 650 T^{3} + 126 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 + 18 T + 201 T^{2} + 1500 T^{3} + 201 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 - 3 T + 156 T^{2} - 312 T^{3} + 156 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 + 3 T + 120 T^{2} + 342 T^{3} + 120 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 - 3 T + 156 T^{2} - 276 T^{3} + 156 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 + 21 T + 228 T^{2} + 1906 T^{3} + 228 p T^{4} + 21 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 - 9 T + 90 T^{2} - 854 T^{3} + 90 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 + 12 T + 192 T^{2} + 1762 T^{3} + 192 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 - 12 T + 228 T^{2} - 1576 T^{3} + 228 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 + 12 T + 276 T^{2} + 1956 T^{3} + 276 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 + 15 T + 330 T^{2} + 2720 T^{3} + 330 p T^{4} + 15 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 - 12 T + 264 T^{2} - 1846 T^{3} + 264 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.49696345504777717971592940945, −7.39663048840699601049389016299, −7.20663605520152693178792292834, −6.71455492544639511164609880072, −6.56566879773725328895352107335, −6.41138665147779275924755758272, −6.28862521698114964792106375290, −6.00735878307250279328760243835, −5.42033306434568974412527810687, −5.36270397000094329740400296419, −4.93496312411866146404560896215, −4.66245048605440427534088636445, −4.55477257525123512930064450708, −4.34153736690433087421148271903, −4.08227951452974919316051352725, −4.01559060560702687459658896699, −3.25473597799137279827818728926, −3.08399025486773192999829271992, −2.83179633898660359022021104389, −2.31945273943292824247292950738, −1.95685428237061879761503200943, −1.39537306277300571392664907869, −1.26913325991095883801150110616, −0.59975001852631606316816543160, −0.25326714943112172465414344513, 0.25326714943112172465414344513, 0.59975001852631606316816543160, 1.26913325991095883801150110616, 1.39537306277300571392664907869, 1.95685428237061879761503200943, 2.31945273943292824247292950738, 2.83179633898660359022021104389, 3.08399025486773192999829271992, 3.25473597799137279827818728926, 4.01559060560702687459658896699, 4.08227951452974919316051352725, 4.34153736690433087421148271903, 4.55477257525123512930064450708, 4.66245048605440427534088636445, 4.93496312411866146404560896215, 5.36270397000094329740400296419, 5.42033306434568974412527810687, 6.00735878307250279328760243835, 6.28862521698114964792106375290, 6.41138665147779275924755758272, 6.56566879773725328895352107335, 6.71455492544639511164609880072, 7.20663605520152693178792292834, 7.39663048840699601049389016299, 7.49696345504777717971592940945

Graph of the $Z$-function along the critical line