| L(s) = 1 | + (0.866 − 0.5i)2-s + (0.623 + 1.07i)3-s + (0.499 − 0.866i)4-s − i·5-s + (1.07 + 0.623i)6-s + (−1.56 − 0.900i)7-s − 0.999i·8-s + (−0.277 + 0.480i)9-s + (−0.5 − 0.866i)10-s + 1.24·12-s − 1.80·14-s + (1.07 − 0.623i)15-s + (−0.5 − 0.866i)16-s + 0.554i·18-s + (−0.866 − 0.499i)20-s − 2.24i·21-s + ⋯ |
| L(s) = 1 | + (0.866 − 0.5i)2-s + (0.623 + 1.07i)3-s + (0.499 − 0.866i)4-s − i·5-s + (1.07 + 0.623i)6-s + (−1.56 − 0.900i)7-s − 0.999i·8-s + (−0.277 + 0.480i)9-s + (−0.5 − 0.866i)10-s + 1.24·12-s − 1.80·14-s + (1.07 − 0.623i)15-s + (−0.5 − 0.866i)16-s + 0.554i·18-s + (−0.866 − 0.499i)20-s − 2.24i·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0502 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0502 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.060122266\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.060122266\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 \) |
| good | 3 | \( 1 + (-0.623 - 1.07i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (1.56 + 0.900i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.222 - 0.385i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.623 + 1.07i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-1.56 + 0.900i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.222 + 0.385i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 - 0.445iT - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.900 + 1.56i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.385 - 0.222i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - 1.24iT - T^{2} \) |
| 89 | \( 1 + (0.385 - 0.222i)T + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.081895342275751436479535881560, −7.87347227691849934111732361990, −6.97486137313162398978862986290, −6.12317866578448815587374717146, −5.36496721485964395945794058848, −4.38873640725518369716860938170, −3.92477737387531372304437657685, −3.38035240969221438299654970410, −2.37819317041807503626218672985, −0.817166871027631114444307414590,
1.98966659284296221469051126806, 2.89939325284227409844063259616, 3.07143685917097775504318720981, 4.20603142907028183589621921382, 5.58920693459498926954262760951, 6.10826047141591979196388284879, 6.87387664586204859894028121568, 7.12847204189656003154473898022, 7.996829532980341195621254162113, 8.772184911705222712704307267184