| L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.623 − 1.07i)3-s + (0.499 + 0.866i)4-s − i·5-s + (−1.07 + 0.623i)6-s + (1.56 − 0.900i)7-s − 0.999i·8-s + (−0.277 − 0.480i)9-s + (−0.5 + 0.866i)10-s + 1.24·12-s − 1.80·14-s + (−1.07 − 0.623i)15-s + (−0.5 + 0.866i)16-s + 0.554i·18-s + (0.866 − 0.499i)20-s − 2.24i·21-s + ⋯ |
| L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.623 − 1.07i)3-s + (0.499 + 0.866i)4-s − i·5-s + (−1.07 + 0.623i)6-s + (1.56 − 0.900i)7-s − 0.999i·8-s + (−0.277 − 0.480i)9-s + (−0.5 + 0.866i)10-s + 1.24·12-s − 1.80·14-s + (−1.07 − 0.623i)15-s + (−0.5 + 0.866i)16-s + 0.554i·18-s + (0.866 − 0.499i)20-s − 2.24i·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.820 + 0.571i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.820 + 0.571i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.266760188\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.266760188\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 \) |
| good | 3 | \( 1 + (-0.623 + 1.07i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (-1.56 + 0.900i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.222 + 0.385i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.623 - 1.07i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (1.56 + 0.900i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.222 - 0.385i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - 0.445iT - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.900 - 1.56i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.385 - 0.222i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - 1.24iT - T^{2} \) |
| 89 | \( 1 + (-0.385 - 0.222i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.526499973232757855777133291029, −7.88454536810201912637032837520, −7.35637007287794768827321693541, −6.76376202265842098534768606646, −5.35933508326913723387066209778, −4.51946982499993589330588766097, −3.66052207779540427052490956159, −2.35702418820719239043730764157, −1.56835154410693863282321618764, −1.02753243536270224154717360985,
1.76760095048315719694056695654, 2.51820558738696211067371205816, 3.53882211625115991536429072201, 4.64899961197908974998430039287, 5.31524893277317446342593760752, 6.13366127638711768436287369709, 7.05366350535171270884187937670, 7.904000965319235057048693672424, 8.348308209917263750995728405182, 9.041127581202077932785062683410