Properties

Label 2-338-1.1-c5-0-55
Degree $2$
Conductor $338$
Sign $-1$
Analytic cond. $54.2097$
Root an. cond. $7.36272$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 19.0·3-s + 16·4-s + 7.20·5-s − 76.2·6-s + 53.6·7-s − 64·8-s + 120.·9-s − 28.8·10-s − 239.·11-s + 305.·12-s − 214.·14-s + 137.·15-s + 256·16-s − 1.97e3·17-s − 482.·18-s + 373.·19-s + 115.·20-s + 1.02e3·21-s + 958.·22-s + 51.4·23-s − 1.22e3·24-s − 3.07e3·25-s − 2.33e3·27-s + 857.·28-s + 4.79e3·29-s − 549.·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.22·3-s + 0.5·4-s + 0.128·5-s − 0.864·6-s + 0.413·7-s − 0.353·8-s + 0.496·9-s − 0.0911·10-s − 0.597·11-s + 0.611·12-s − 0.292·14-s + 0.157·15-s + 0.250·16-s − 1.65·17-s − 0.350·18-s + 0.237·19-s + 0.0644·20-s + 0.505·21-s + 0.422·22-s + 0.0202·23-s − 0.432·24-s − 0.983·25-s − 0.616·27-s + 0.206·28-s + 1.05·29-s − 0.111·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(54.2097\)
Root analytic conductor: \(7.36272\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
13 \( 1 \)
good3 \( 1 - 19.0T + 243T^{2} \)
5 \( 1 - 7.20T + 3.12e3T^{2} \)
7 \( 1 - 53.6T + 1.68e4T^{2} \)
11 \( 1 + 239.T + 1.61e5T^{2} \)
17 \( 1 + 1.97e3T + 1.41e6T^{2} \)
19 \( 1 - 373.T + 2.47e6T^{2} \)
23 \( 1 - 51.4T + 6.43e6T^{2} \)
29 \( 1 - 4.79e3T + 2.05e7T^{2} \)
31 \( 1 + 6.90e3T + 2.86e7T^{2} \)
37 \( 1 + 1.14e4T + 6.93e7T^{2} \)
41 \( 1 + 1.25e4T + 1.15e8T^{2} \)
43 \( 1 - 1.15e3T + 1.47e8T^{2} \)
47 \( 1 - 1.86e4T + 2.29e8T^{2} \)
53 \( 1 - 9.31e3T + 4.18e8T^{2} \)
59 \( 1 - 5.06e3T + 7.14e8T^{2} \)
61 \( 1 - 5.42e4T + 8.44e8T^{2} \)
67 \( 1 + 4.02e4T + 1.35e9T^{2} \)
71 \( 1 - 6.52e4T + 1.80e9T^{2} \)
73 \( 1 + 6.85e4T + 2.07e9T^{2} \)
79 \( 1 - 1.06e4T + 3.07e9T^{2} \)
83 \( 1 - 2.35e3T + 3.93e9T^{2} \)
89 \( 1 - 9.36e4T + 5.58e9T^{2} \)
97 \( 1 - 3.11e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07991657122364246337358562580, −9.053923761128152583222504298828, −8.525852876194197072812115536796, −7.68889830868501058980082796049, −6.73258636950530175302554814160, −5.29423589014569143371562655113, −3.84629455008342125298583691251, −2.58677046030454400668603076499, −1.79127916766634891950069890201, 0, 1.79127916766634891950069890201, 2.58677046030454400668603076499, 3.84629455008342125298583691251, 5.29423589014569143371562655113, 6.73258636950530175302554814160, 7.68889830868501058980082796049, 8.525852876194197072812115536796, 9.053923761128152583222504298828, 10.07991657122364246337358562580

Graph of the $Z$-function along the critical line