L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + i·5-s + (−3.46 − 2i)7-s + 0.999i·8-s + (1.5 − 2.59i)9-s + (−0.5 − 0.866i)10-s + (3.46 − 2i)11-s + 3.99·14-s + (−0.5 − 0.866i)16-s + (1.5 − 2.59i)17-s + 3i·18-s + (0.866 + 0.499i)20-s + (−1.99 + 3.46i)22-s + (−2 − 3.46i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + 0.447i·5-s + (−1.30 − 0.755i)7-s + 0.353i·8-s + (0.5 − 0.866i)9-s + (−0.158 − 0.273i)10-s + (1.04 − 0.603i)11-s + 1.06·14-s + (−0.125 − 0.216i)16-s + (0.363 − 0.630i)17-s + 0.707i·18-s + (0.193 + 0.111i)20-s + (−0.426 + 0.738i)22-s + (−0.417 − 0.722i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.711 + 0.702i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.711 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.798107 - 0.327593i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.798107 - 0.327593i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - iT - 5T^{2} \) |
| 7 | \( 1 + (3.46 + 2i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.46 + 2i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2 + 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4iT - 31T^{2} \) |
| 37 | \( 1 + (-2.59 + 1.5i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-7.79 + 4.5i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4 - 6.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 8iT - 47T^{2} \) |
| 53 | \( 1 + 9T + 53T^{2} \) |
| 59 | \( 1 + (-3.46 - 2i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 - 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.46 - 2i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (6.92 + 4i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 11iT - 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 + (5.19 - 3i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.73 - i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.26902646039385007318933898395, −10.23064491113738426669289572160, −9.599509808020466987710119194587, −8.823988958816526183095175191946, −7.39209619896648476123467525854, −6.66694449747106026976686636574, −6.06879125257888266636633019758, −4.13502130461993848287457357303, −3.08215926446707170637571756288, −0.792912423538577315458192735290,
1.66040070775267475631262906470, 3.15425685526444171140156879977, 4.49497364421246769370532163952, 5.95943776994714551429821434741, 6.93994845240406028385695019792, 8.051214225885554740725511473465, 9.129861684783321364502906401226, 9.663989473897900537010782482179, 10.54652768999801307921101006696, 11.72421316808822318867774421141