Properties

Label 6-338e3-1.1-c1e3-0-0
Degree $6$
Conductor $38614472$
Sign $1$
Analytic cond. $19.6599$
Root an. cond. $1.64284$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 3·3-s + 6·4-s − 2·5-s − 9·6-s + 4·7-s − 10·8-s + 4·9-s + 6·10-s − 3·11-s + 18·12-s − 12·14-s − 6·15-s + 15·16-s + 5·17-s − 12·18-s − 19-s − 12·20-s + 12·21-s + 9·22-s − 30·24-s − 3·25-s + 2·27-s + 24·28-s − 10·29-s + 18·30-s + 16·31-s + ⋯
L(s)  = 1  − 2.12·2-s + 1.73·3-s + 3·4-s − 0.894·5-s − 3.67·6-s + 1.51·7-s − 3.53·8-s + 4/3·9-s + 1.89·10-s − 0.904·11-s + 5.19·12-s − 3.20·14-s − 1.54·15-s + 15/4·16-s + 1.21·17-s − 2.82·18-s − 0.229·19-s − 2.68·20-s + 2.61·21-s + 1.91·22-s − 6.12·24-s − 3/5·25-s + 0.384·27-s + 4.53·28-s − 1.85·29-s + 3.28·30-s + 2.87·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38614472 ^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38614472 ^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(38614472\)    =    \(2^{3} \cdot 13^{6}\)
Sign: $1$
Analytic conductor: \(19.6599\)
Root analytic conductor: \(1.64284\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 38614472,\ (\ :1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.146229331\)
\(L(\frac12)\) \(\approx\) \(1.146229331\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{3} \)
13 \( 1 \)
good3$A_4\times C_2$ \( 1 - p T + 5 T^{2} - 5 T^{3} + 5 p T^{4} - p^{3} T^{5} + p^{3} T^{6} \)
5$A_4\times C_2$ \( 1 + 2 T + 7 T^{2} + 12 T^{3} + 7 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
7$A_4\times C_2$ \( 1 - 4 T + 17 T^{2} - 48 T^{3} + 17 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
11$A_4\times C_2$ \( 1 + 3 T + 29 T^{2} + 53 T^{3} + 29 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \)
17$A_4\times C_2$ \( 1 - 5 T + 29 T^{2} - 73 T^{3} + 29 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
19$A_4\times C_2$ \( 1 + T + 41 T^{2} + 51 T^{3} + 41 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
23$A_4\times C_2$ \( 1 + 41 T^{2} + 56 T^{3} + 41 p T^{4} + p^{3} T^{6} \)
29$A_4\times C_2$ \( 1 + 10 T + 83 T^{2} + 476 T^{3} + 83 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
31$A_4\times C_2$ \( 1 - 16 T + 169 T^{2} - 1096 T^{3} + 169 p T^{4} - 16 p^{2} T^{5} + p^{3} T^{6} \)
37$A_4\times C_2$ \( 1 - 14 T + 167 T^{2} - 1092 T^{3} + 167 p T^{4} - 14 p^{2} T^{5} + p^{3} T^{6} \)
41$A_4\times C_2$ \( 1 + 7 T + 109 T^{2} + 483 T^{3} + 109 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} \)
43$A_4\times C_2$ \( 1 - 11 T + 125 T^{2} - 945 T^{3} + 125 p T^{4} - 11 p^{2} T^{5} + p^{3} T^{6} \)
47$A_4\times C_2$ \( 1 - 2 T + 105 T^{2} - 180 T^{3} + 105 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
53$A_4\times C_2$ \( 1 + 131 T^{2} - 56 T^{3} + 131 p T^{4} + p^{3} T^{6} \)
59$A_4\times C_2$ \( 1 - 3 T + 117 T^{2} - 481 T^{3} + 117 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
61$A_4\times C_2$ \( 1 + 4 T + 39 T^{2} + 424 T^{3} + 39 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
67$A_4\times C_2$ \( 1 + 21 T + 285 T^{2} + 2527 T^{3} + 285 p T^{4} + 21 p^{2} T^{5} + p^{3} T^{6} \)
71$A_4\times C_2$ \( 1 - 12 T + 233 T^{2} - 1712 T^{3} + 233 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
73$A_4\times C_2$ \( 1 + T + 133 T^{2} + 397 T^{3} + 133 p T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
79$A_4\times C_2$ \( 1 + 18 T + 261 T^{2} + 2612 T^{3} + 261 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6} \)
83$A_4\times C_2$ \( 1 - T + 233 T^{2} - 179 T^{3} + 233 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
89$A_4\times C_2$ \( 1 + 25 T + 361 T^{2} + 3693 T^{3} + 361 p T^{4} + 25 p^{2} T^{5} + p^{3} T^{6} \)
97$A_4\times C_2$ \( 1 + 23 T + 353 T^{2} + 3579 T^{3} + 353 p T^{4} + 23 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.21169053678005845976424476082, −9.950693021206699968071789598736, −9.557204197765491604035751881303, −9.271315054689697286832554069889, −9.124183720497808064025075784833, −8.448388043929398028587888871291, −8.433025627231612324991871870798, −8.032097583245981141471144508013, −7.928290680994143610446068355397, −7.81517310197648222723600190525, −7.52874605587915491766757492111, −6.96750954989767630616038946645, −6.89531212031146585363038881931, −6.03626399448508789783736714976, −5.65435300109182758421939538692, −5.62703942190026838327956302047, −4.66930375373960719358478139000, −4.27245566155578154403308539282, −4.12473728616083118300334546827, −3.19324996294494397930569399052, −2.88254502174365047261052599536, −2.75664713130300424803391274565, −1.86995629665135213307745984822, −1.68280096950707187455959748741, −0.75336314361189250095040983026, 0.75336314361189250095040983026, 1.68280096950707187455959748741, 1.86995629665135213307745984822, 2.75664713130300424803391274565, 2.88254502174365047261052599536, 3.19324996294494397930569399052, 4.12473728616083118300334546827, 4.27245566155578154403308539282, 4.66930375373960719358478139000, 5.62703942190026838327956302047, 5.65435300109182758421939538692, 6.03626399448508789783736714976, 6.89531212031146585363038881931, 6.96750954989767630616038946645, 7.52874605587915491766757492111, 7.81517310197648222723600190525, 7.928290680994143610446068355397, 8.032097583245981141471144508013, 8.433025627231612324991871870798, 8.448388043929398028587888871291, 9.124183720497808064025075784833, 9.271315054689697286832554069889, 9.557204197765491604035751881303, 9.950693021206699968071789598736, 10.21169053678005845976424476082

Graph of the $Z$-function along the critical line