Properties

Label 2-58e2-116.63-c0-0-7
Degree $2$
Conductor $3364$
Sign $-0.988 + 0.151i$
Analytic cond. $1.67885$
Root an. cond. $1.29570$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.781 − 0.623i)2-s + (0.222 − 0.974i)4-s + (−0.777 − 0.974i)5-s + (−0.433 − 0.900i)8-s + (0.900 − 0.433i)9-s + (−1.21 − 0.277i)10-s + (−1.62 − 0.781i)13-s + (−0.900 − 0.433i)16-s + 0.445i·17-s + (0.433 − 0.900i)18-s + (−1.12 + 0.541i)20-s + (−0.123 + 0.541i)25-s + (−1.75 + 0.400i)26-s + (−0.974 + 0.222i)32-s + (0.277 + 0.347i)34-s + ⋯
L(s)  = 1  + (0.781 − 0.623i)2-s + (0.222 − 0.974i)4-s + (−0.777 − 0.974i)5-s + (−0.433 − 0.900i)8-s + (0.900 − 0.433i)9-s + (−1.21 − 0.277i)10-s + (−1.62 − 0.781i)13-s + (−0.900 − 0.433i)16-s + 0.445i·17-s + (0.433 − 0.900i)18-s + (−1.12 + 0.541i)20-s + (−0.123 + 0.541i)25-s + (−1.75 + 0.400i)26-s + (−0.974 + 0.222i)32-s + (0.277 + 0.347i)34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3364 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3364 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.151i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3364\)    =    \(2^{2} \cdot 29^{2}\)
Sign: $-0.988 + 0.151i$
Analytic conductor: \(1.67885\)
Root analytic conductor: \(1.29570\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3364} (63, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3364,\ (\ :0),\ -0.988 + 0.151i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.399898013\)
\(L(\frac12)\) \(\approx\) \(1.399898013\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.781 + 0.623i)T \)
29 \( 1 \)
good3 \( 1 + (-0.900 + 0.433i)T^{2} \)
5 \( 1 + (0.777 + 0.974i)T + (-0.222 + 0.974i)T^{2} \)
7 \( 1 + (0.900 - 0.433i)T^{2} \)
11 \( 1 + (0.623 + 0.781i)T^{2} \)
13 \( 1 + (1.62 + 0.781i)T + (0.623 + 0.781i)T^{2} \)
17 \( 1 - 0.445iT - T^{2} \)
19 \( 1 + (-0.900 - 0.433i)T^{2} \)
23 \( 1 + (0.222 + 0.974i)T^{2} \)
31 \( 1 + (-0.222 + 0.974i)T^{2} \)
37 \( 1 + (-0.781 - 1.62i)T + (-0.623 + 0.781i)T^{2} \)
41 \( 1 + 1.80iT - T^{2} \)
43 \( 1 + (-0.222 - 0.974i)T^{2} \)
47 \( 1 + (0.623 + 0.781i)T^{2} \)
53 \( 1 + (0.277 + 0.347i)T + (-0.222 + 0.974i)T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + (-0.433 + 0.0990i)T + (0.900 - 0.433i)T^{2} \)
67 \( 1 + (-0.623 + 0.781i)T^{2} \)
71 \( 1 + (-0.623 - 0.781i)T^{2} \)
73 \( 1 + (0.347 + 0.277i)T + (0.222 + 0.974i)T^{2} \)
79 \( 1 + (0.623 - 0.781i)T^{2} \)
83 \( 1 + (0.900 + 0.433i)T^{2} \)
89 \( 1 + (-0.974 + 0.777i)T + (0.222 - 0.974i)T^{2} \)
97 \( 1 + (-1.75 - 0.400i)T + (0.900 + 0.433i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.455996829108700748252220084591, −7.63012741344669249531042534267, −6.95815940780268435379938797305, −5.99833345537054087146380168987, −5.00923945062221528441815391135, −4.62411000072276766131942932959, −3.85231825416908246018916041636, −2.95349529792161803584043462484, −1.79283196647504301411075781208, −0.62012619899130350259905919859, 2.13873976212417495930508196061, 2.90521461472348975578268550059, 3.88806021284573918515411790184, 4.56088133526715135003814067616, 5.18508475504228907662276699962, 6.40050571593513447530939031035, 6.93317902872135782286579677957, 7.61204486624878628530896040213, 7.81599535945666756556402624590, 9.114742232830911301822201843221

Graph of the $Z$-function along the critical line