Properties

Label 16-336e8-1.1-c6e8-0-8
Degree $16$
Conductor $1.624\times 10^{20}$
Sign $1$
Analytic cond. $1.27454\times 10^{15}$
Root an. cond. $8.79193$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 108·3-s + 462·5-s − 580·7-s + 6.31e3·9-s − 1.80e3·11-s + 4.98e4·15-s + 9.56e3·17-s − 2.30e4·19-s − 6.26e4·21-s − 2.40e3·23-s + 9.18e4·25-s + 2.62e5·27-s − 2.48e3·29-s − 1.48e5·31-s − 1.95e5·33-s − 2.67e5·35-s − 8.40e4·37-s − 9.29e4·43-s + 2.91e6·45-s + 3.23e5·47-s + 1.63e5·49-s + 1.03e6·51-s + 3.58e5·53-s − 8.34e5·55-s − 2.48e6·57-s − 7.19e5·59-s + 4.21e5·61-s + ⋯
L(s)  = 1  + 4·3-s + 3.69·5-s − 1.69·7-s + 26/3·9-s − 1.35·11-s + 14.7·15-s + 1.94·17-s − 3.35·19-s − 6.76·21-s − 0.197·23-s + 5.87·25-s + 40/3·27-s − 0.101·29-s − 4.98·31-s − 5.42·33-s − 6.24·35-s − 1.65·37-s − 1.16·43-s + 32.0·45-s + 3.11·47-s + 1.39·49-s + 7.78·51-s + 2.40·53-s − 5.01·55-s − 13.4·57-s − 3.50·59-s + 1.85·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(7-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+3)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{32} \cdot 3^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(1.27454\times 10^{15}\)
Root analytic conductor: \(8.79193\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{32} \cdot 3^{8} \cdot 7^{8} ,\ ( \ : [3]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(337.7009735\)
\(L(\frac12)\) \(\approx\) \(337.7009735\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( ( 1 - p^{3} T + p^{5} T^{2} )^{4} \)
7 \( 1 + 580 T + 24646 p T^{2} + 127600 p^{3} T^{3} + 73027 p^{6} T^{4} + 127600 p^{9} T^{5} + 24646 p^{13} T^{6} + 580 p^{18} T^{7} + p^{24} T^{8} \)
good5 \( 1 - 462 T + 121591 T^{2} - 23304666 T^{3} + 3663451549 T^{4} - 17853486588 p^{2} T^{5} + 1697558359186 p^{2} T^{6} - 5617362787032 p^{4} T^{7} + 581774881299754 p^{4} T^{8} - 5617362787032 p^{10} T^{9} + 1697558359186 p^{14} T^{10} - 17853486588 p^{20} T^{11} + 3663451549 p^{24} T^{12} - 23304666 p^{30} T^{13} + 121591 p^{36} T^{14} - 462 p^{42} T^{15} + p^{48} T^{16} \)
11 \( 1 + 1806 T + 343139 T^{2} + 64134102 p T^{3} + 17940955739 p T^{4} - 3348273478860 p^{3} T^{5} + 3975088885585982894 T^{6} + \)\(12\!\cdots\!88\)\( T^{7} + \)\(80\!\cdots\!02\)\( T^{8} + \)\(12\!\cdots\!88\)\( p^{6} T^{9} + 3975088885585982894 p^{12} T^{10} - 3348273478860 p^{21} T^{11} + 17940955739 p^{25} T^{12} + 64134102 p^{31} T^{13} + 343139 p^{36} T^{14} + 1806 p^{42} T^{15} + p^{48} T^{16} \)
13 \( 1 - 20741762 T^{2} + 250646566781089 T^{4} - \)\(19\!\cdots\!50\)\( T^{6} + \)\(11\!\cdots\!92\)\( T^{8} - \)\(19\!\cdots\!50\)\( p^{12} T^{10} + 250646566781089 p^{24} T^{12} - 20741762 p^{36} T^{14} + p^{48} T^{16} \)
17 \( 1 - 9564 T + 89393680 T^{2} - 563354489472 T^{3} + 2845522364345362 T^{4} - 6080256459438545484 T^{5} - \)\(22\!\cdots\!76\)\( T^{6} + \)\(25\!\cdots\!28\)\( T^{7} - \)\(15\!\cdots\!73\)\( T^{8} + \)\(25\!\cdots\!28\)\( p^{6} T^{9} - \)\(22\!\cdots\!76\)\( p^{12} T^{10} - 6080256459438545484 p^{18} T^{11} + 2845522364345362 p^{24} T^{12} - 563354489472 p^{30} T^{13} + 89393680 p^{36} T^{14} - 9564 p^{42} T^{15} + p^{48} T^{16} \)
19 \( 1 + 23022 T + 361976623 T^{2} + 4266110012490 T^{3} + 44167009488306445 T^{4} + \)\(41\!\cdots\!00\)\( T^{5} + \)\(35\!\cdots\!10\)\( T^{6} + \)\(27\!\cdots\!08\)\( T^{7} + \)\(19\!\cdots\!58\)\( T^{8} + \)\(27\!\cdots\!08\)\( p^{6} T^{9} + \)\(35\!\cdots\!10\)\( p^{12} T^{10} + \)\(41\!\cdots\!00\)\( p^{18} T^{11} + 44167009488306445 p^{24} T^{12} + 4266110012490 p^{30} T^{13} + 361976623 p^{36} T^{14} + 23022 p^{42} T^{15} + p^{48} T^{16} \)
23 \( 1 + 2400 T - 340709188 T^{2} + 1754150275392 T^{3} + 61912758108945610 T^{4} - \)\(51\!\cdots\!92\)\( T^{5} - \)\(49\!\cdots\!80\)\( T^{6} + \)\(20\!\cdots\!60\)\( p T^{7} + \)\(40\!\cdots\!67\)\( T^{8} + \)\(20\!\cdots\!60\)\( p^{7} T^{9} - \)\(49\!\cdots\!80\)\( p^{12} T^{10} - \)\(51\!\cdots\!92\)\( p^{18} T^{11} + 61912758108945610 p^{24} T^{12} + 1754150275392 p^{30} T^{13} - 340709188 p^{36} T^{14} + 2400 p^{42} T^{15} + p^{48} T^{16} \)
29 \( ( 1 + 1242 T + 1090691725 T^{2} + 1943067761982 T^{3} + 828942231558495912 T^{4} + 1943067761982 p^{6} T^{5} + 1090691725 p^{12} T^{6} + 1242 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
31 \( 1 + 148416 T + 13015135150 T^{2} + 841919264803968 T^{3} + 44373678311034269425 T^{4} + \)\(19\!\cdots\!52\)\( T^{5} + \)\(78\!\cdots\!42\)\( T^{6} + \)\(27\!\cdots\!12\)\( T^{7} + \)\(87\!\cdots\!64\)\( T^{8} + \)\(27\!\cdots\!12\)\( p^{6} T^{9} + \)\(78\!\cdots\!42\)\( p^{12} T^{10} + \)\(19\!\cdots\!52\)\( p^{18} T^{11} + 44373678311034269425 p^{24} T^{12} + 841919264803968 p^{30} T^{13} + 13015135150 p^{36} T^{14} + 148416 p^{42} T^{15} + p^{48} T^{16} \)
37 \( 1 + 84046 T - 95144565 T^{2} - 203068161754894 T^{3} - 5662159274758793959 T^{4} + \)\(30\!\cdots\!80\)\( T^{5} + \)\(40\!\cdots\!22\)\( T^{6} - \)\(10\!\cdots\!40\)\( T^{7} - \)\(24\!\cdots\!74\)\( T^{8} - \)\(10\!\cdots\!40\)\( p^{6} T^{9} + \)\(40\!\cdots\!22\)\( p^{12} T^{10} + \)\(30\!\cdots\!80\)\( p^{18} T^{11} - 5662159274758793959 p^{24} T^{12} - 203068161754894 p^{30} T^{13} - 95144565 p^{36} T^{14} + 84046 p^{42} T^{15} + p^{48} T^{16} \)
41 \( 1 - 22413338264 T^{2} + \)\(26\!\cdots\!52\)\( T^{4} - \)\(21\!\cdots\!16\)\( T^{6} + \)\(11\!\cdots\!18\)\( T^{8} - \)\(21\!\cdots\!16\)\( p^{12} T^{10} + \)\(26\!\cdots\!52\)\( p^{24} T^{12} - 22413338264 p^{36} T^{14} + p^{48} T^{16} \)
43 \( ( 1 + 46486 T + 20861480377 T^{2} + 817839869460550 T^{3} + \)\(18\!\cdots\!56\)\( T^{4} + 817839869460550 p^{6} T^{5} + 20861480377 p^{12} T^{6} + 46486 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
47 \( 1 - 323124 T + 74587753216 T^{2} - 12855395740416576 T^{3} + \)\(18\!\cdots\!54\)\( T^{4} - \)\(24\!\cdots\!60\)\( T^{5} + \)\(28\!\cdots\!28\)\( T^{6} - \)\(31\!\cdots\!36\)\( T^{7} + \)\(33\!\cdots\!75\)\( T^{8} - \)\(31\!\cdots\!36\)\( p^{6} T^{9} + \)\(28\!\cdots\!28\)\( p^{12} T^{10} - \)\(24\!\cdots\!60\)\( p^{18} T^{11} + \)\(18\!\cdots\!54\)\( p^{24} T^{12} - 12855395740416576 p^{30} T^{13} + 74587753216 p^{36} T^{14} - 323124 p^{42} T^{15} + p^{48} T^{16} \)
53 \( 1 - 358086 T + 67654849271 T^{2} - 10791940432837962 T^{3} + \)\(12\!\cdots\!49\)\( T^{4} - \)\(82\!\cdots\!52\)\( T^{5} + \)\(27\!\cdots\!50\)\( p T^{6} - \)\(27\!\cdots\!52\)\( T^{7} + \)\(35\!\cdots\!02\)\( T^{8} - \)\(27\!\cdots\!52\)\( p^{6} T^{9} + \)\(27\!\cdots\!50\)\( p^{13} T^{10} - \)\(82\!\cdots\!52\)\( p^{18} T^{11} + \)\(12\!\cdots\!49\)\( p^{24} T^{12} - 10791940432837962 p^{30} T^{13} + 67654849271 p^{36} T^{14} - 358086 p^{42} T^{15} + p^{48} T^{16} \)
59 \( 1 + 719382 T + 395234742835 T^{2} + 160228856063524314 T^{3} + \)\(56\!\cdots\!17\)\( T^{4} + \)\(16\!\cdots\!92\)\( T^{5} + \)\(45\!\cdots\!26\)\( T^{6} + \)\(10\!\cdots\!04\)\( T^{7} + \)\(23\!\cdots\!02\)\( T^{8} + \)\(10\!\cdots\!04\)\( p^{6} T^{9} + \)\(45\!\cdots\!26\)\( p^{12} T^{10} + \)\(16\!\cdots\!92\)\( p^{18} T^{11} + \)\(56\!\cdots\!17\)\( p^{24} T^{12} + 160228856063524314 p^{30} T^{13} + 395234742835 p^{36} T^{14} + 719382 p^{42} T^{15} + p^{48} T^{16} \)
61 \( 1 - 421536 T + 103907366020 T^{2} - 18832752930327168 T^{3} + \)\(15\!\cdots\!58\)\( T^{4} - \)\(45\!\cdots\!72\)\( T^{5} - \)\(21\!\cdots\!32\)\( T^{6} + \)\(10\!\cdots\!96\)\( T^{7} - \)\(28\!\cdots\!73\)\( T^{8} + \)\(10\!\cdots\!96\)\( p^{6} T^{9} - \)\(21\!\cdots\!32\)\( p^{12} T^{10} - \)\(45\!\cdots\!72\)\( p^{18} T^{11} + \)\(15\!\cdots\!58\)\( p^{24} T^{12} - 18832752930327168 p^{30} T^{13} + 103907366020 p^{36} T^{14} - 421536 p^{42} T^{15} + p^{48} T^{16} \)
67 \( 1 + 267010 T - 152513452041 T^{2} - 61154210757796450 T^{3} + \)\(10\!\cdots\!47\)\( p T^{4} + \)\(47\!\cdots\!60\)\( T^{5} - \)\(12\!\cdots\!10\)\( T^{6} - \)\(14\!\cdots\!80\)\( T^{7} + \)\(13\!\cdots\!62\)\( T^{8} - \)\(14\!\cdots\!80\)\( p^{6} T^{9} - \)\(12\!\cdots\!10\)\( p^{12} T^{10} + \)\(47\!\cdots\!60\)\( p^{18} T^{11} + \)\(10\!\cdots\!47\)\( p^{25} T^{12} - 61154210757796450 p^{30} T^{13} - 152513452041 p^{36} T^{14} + 267010 p^{42} T^{15} + p^{48} T^{16} \)
71 \( ( 1 - 232332 T + 385365830296 T^{2} - 62567607151798020 T^{3} + \)\(67\!\cdots\!14\)\( T^{4} - 62567607151798020 p^{6} T^{5} + 385365830296 p^{12} T^{6} - 232332 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
73 \( 1 - 1944486 T + 2298456740059 T^{2} - 2018599705351076922 T^{3} + \)\(14\!\cdots\!81\)\( T^{4} - \)\(87\!\cdots\!48\)\( T^{5} + \)\(46\!\cdots\!10\)\( T^{6} - \)\(21\!\cdots\!04\)\( T^{7} + \)\(88\!\cdots\!42\)\( T^{8} - \)\(21\!\cdots\!04\)\( p^{6} T^{9} + \)\(46\!\cdots\!10\)\( p^{12} T^{10} - \)\(87\!\cdots\!48\)\( p^{18} T^{11} + \)\(14\!\cdots\!81\)\( p^{24} T^{12} - 2018599705351076922 p^{30} T^{13} + 2298456740059 p^{36} T^{14} - 1944486 p^{42} T^{15} + p^{48} T^{16} \)
79 \( 1 - 685904 T - 133173773202 T^{2} + 95757006040253216 T^{3} + \)\(16\!\cdots\!81\)\( T^{4} + \)\(21\!\cdots\!20\)\( T^{5} - \)\(10\!\cdots\!90\)\( T^{6} - \)\(45\!\cdots\!20\)\( p T^{7} + \)\(25\!\cdots\!20\)\( T^{8} - \)\(45\!\cdots\!20\)\( p^{7} T^{9} - \)\(10\!\cdots\!90\)\( p^{12} T^{10} + \)\(21\!\cdots\!20\)\( p^{18} T^{11} + \)\(16\!\cdots\!81\)\( p^{24} T^{12} + 95757006040253216 p^{30} T^{13} - 133173773202 p^{36} T^{14} - 685904 p^{42} T^{15} + p^{48} T^{16} \)
83 \( 1 - 1431268238810 T^{2} + \)\(10\!\cdots\!57\)\( T^{4} - \)\(56\!\cdots\!70\)\( T^{6} + \)\(21\!\cdots\!48\)\( T^{8} - \)\(56\!\cdots\!70\)\( p^{12} T^{10} + \)\(10\!\cdots\!57\)\( p^{24} T^{12} - 1431268238810 p^{36} T^{14} + p^{48} T^{16} \)
89 \( 1 - 4130604 T + 8816525059216 T^{2} - 12925604134667650176 T^{3} + \)\(14\!\cdots\!86\)\( T^{4} - \)\(13\!\cdots\!20\)\( T^{5} + \)\(10\!\cdots\!12\)\( T^{6} - \)\(72\!\cdots\!80\)\( T^{7} + \)\(50\!\cdots\!39\)\( T^{8} - \)\(72\!\cdots\!80\)\( p^{6} T^{9} + \)\(10\!\cdots\!12\)\( p^{12} T^{10} - \)\(13\!\cdots\!20\)\( p^{18} T^{11} + \)\(14\!\cdots\!86\)\( p^{24} T^{12} - 12925604134667650176 p^{30} T^{13} + 8816525059216 p^{36} T^{14} - 4130604 p^{42} T^{15} + p^{48} T^{16} \)
97 \( 1 - 4008470100050 T^{2} + \)\(86\!\cdots\!01\)\( T^{4} - \)\(11\!\cdots\!30\)\( T^{6} + \)\(11\!\cdots\!20\)\( T^{8} - \)\(11\!\cdots\!30\)\( p^{12} T^{10} + \)\(86\!\cdots\!01\)\( p^{24} T^{12} - 4008470100050 p^{36} T^{14} + p^{48} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.94820906606913939489458530107, −3.74147930243281583037805518402, −3.56442926398324197005883601414, −3.54181757399513506008182340987, −3.32348026671491195383363120766, −3.30586560838272770917034463839, −3.29097426991182555766096482196, −2.82104423943087157617728077028, −2.74114687963180021090301434843, −2.44074054026770662567500067967, −2.37362046641755401747587378355, −2.37059064419993134514859202618, −2.29059869027890811723183142241, −2.24831614452905568056639052895, −1.79386368659961870409909513670, −1.76683653057053384164533717451, −1.75526113336205906860092649121, −1.69006846960349958253500636440, −1.53404525525762185280715726229, −1.27960425546007117639387032654, −0.69710703629165300941890278480, −0.58734024668201646613110959383, −0.53445566931600181750675819076, −0.45058623985018949228873426485, −0.35444726760883804682018252660, 0.35444726760883804682018252660, 0.45058623985018949228873426485, 0.53445566931600181750675819076, 0.58734024668201646613110959383, 0.69710703629165300941890278480, 1.27960425546007117639387032654, 1.53404525525762185280715726229, 1.69006846960349958253500636440, 1.75526113336205906860092649121, 1.76683653057053384164533717451, 1.79386368659961870409909513670, 2.24831614452905568056639052895, 2.29059869027890811723183142241, 2.37059064419993134514859202618, 2.37362046641755401747587378355, 2.44074054026770662567500067967, 2.74114687963180021090301434843, 2.82104423943087157617728077028, 3.29097426991182555766096482196, 3.30586560838272770917034463839, 3.32348026671491195383363120766, 3.54181757399513506008182340987, 3.56442926398324197005883601414, 3.74147930243281583037805518402, 3.94820906606913939489458530107

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.