Properties

Label 16-336e8-1.1-c6e8-0-7
Degree $16$
Conductor $1.624\times 10^{20}$
Sign $1$
Analytic cond. $1.27454\times 10^{15}$
Root an. cond. $8.79193$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 108·3-s − 42·5-s + 92·7-s + 6.31e3·9-s − 126·11-s − 4.53e3·15-s − 2.53e3·17-s − 1.99e4·19-s + 9.93e3·21-s + 1.56e4·23-s − 9.01e3·25-s + 2.62e5·27-s + 1.29e5·29-s + 4.20e4·31-s − 1.36e4·33-s − 3.86e3·35-s + 9.86e3·37-s + 7.17e4·43-s − 2.65e5·45-s − 8.69e4·47-s + 1.61e5·49-s − 2.73e5·51-s + 3.91e5·53-s + 5.29e3·55-s − 2.15e6·57-s + 5.53e5·59-s − 1.00e6·61-s + ⋯
L(s)  = 1  + 4·3-s − 0.335·5-s + 0.268·7-s + 26/3·9-s − 0.0946·11-s − 1.34·15-s − 0.515·17-s − 2.91·19-s + 1.07·21-s + 1.28·23-s − 0.577·25-s + 40/3·27-s + 5.30·29-s + 1.41·31-s − 0.378·33-s − 0.0901·35-s + 0.194·37-s + 0.902·43-s − 2.91·45-s − 0.837·47-s + 1.37·49-s − 2.06·51-s + 2.63·53-s + 0.0318·55-s − 11.6·57-s + 2.69·59-s − 4.44·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(7-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+3)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{32} \cdot 3^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(1.27454\times 10^{15}\)
Root analytic conductor: \(8.79193\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{32} \cdot 3^{8} \cdot 7^{8} ,\ ( \ : [3]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(122.0256330\)
\(L(\frac12)\) \(\approx\) \(122.0256330\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( ( 1 - p^{3} T + p^{5} T^{2} )^{4} \)
7 \( 1 - 92 T - 21866 p T^{2} + 17296 p^{3} T^{3} + 103315 p^{6} T^{4} + 17296 p^{9} T^{5} - 21866 p^{13} T^{6} - 92 p^{18} T^{7} + p^{24} T^{8} \)
good5 \( 1 + 42 T + 10783 T^{2} + 85638 p T^{3} + 5055781 p^{2} T^{4} + 3342708 p^{5} T^{5} - 6123397118 p^{4} T^{6} - 2172720264 p^{7} T^{7} - 4336120101206 p^{6} T^{8} - 2172720264 p^{13} T^{9} - 6123397118 p^{16} T^{10} + 3342708 p^{23} T^{11} + 5055781 p^{26} T^{12} + 85638 p^{31} T^{13} + 10783 p^{36} T^{14} + 42 p^{42} T^{15} + p^{48} T^{16} \)
11 \( 1 + 126 T - 5257453 T^{2} - 464436702 T^{3} + 14512948661161 T^{4} + 643973588741916 T^{5} - 36441609127203872914 T^{6} - \)\(29\!\cdots\!68\)\( T^{7} + \)\(77\!\cdots\!90\)\( T^{8} - \)\(29\!\cdots\!68\)\( p^{6} T^{9} - 36441609127203872914 p^{12} T^{10} + 643973588741916 p^{18} T^{11} + 14512948661161 p^{24} T^{12} - 464436702 p^{30} T^{13} - 5257453 p^{36} T^{14} + 126 p^{42} T^{15} + p^{48} T^{16} \)
13 \( 1 - 25871282 T^{2} + 24361348154677 p T^{4} - \)\(24\!\cdots\!54\)\( T^{6} + \)\(13\!\cdots\!40\)\( T^{8} - \)\(24\!\cdots\!54\)\( p^{12} T^{10} + 24361348154677 p^{25} T^{12} - 25871282 p^{36} T^{14} + p^{48} T^{16} \)
17 \( 1 + 2532 T + 18867376 T^{2} + 42361291776 T^{3} - 418607858989358 T^{4} + 384384340831876020 T^{5} - \)\(65\!\cdots\!40\)\( T^{6} - \)\(94\!\cdots\!64\)\( T^{7} - \)\(11\!\cdots\!25\)\( T^{8} - \)\(94\!\cdots\!64\)\( p^{6} T^{9} - \)\(65\!\cdots\!40\)\( p^{12} T^{10} + 384384340831876020 p^{18} T^{11} - 418607858989358 p^{24} T^{12} + 42361291776 p^{30} T^{13} + 18867376 p^{36} T^{14} + 2532 p^{42} T^{15} + p^{48} T^{16} \)
19 \( 1 + 19998 T + 294723631 T^{2} + 3228016426074 T^{3} + 29196210121257421 T^{4} + \)\(25\!\cdots\!96\)\( T^{5} + \)\(20\!\cdots\!02\)\( T^{6} + \)\(83\!\cdots\!24\)\( p T^{7} + \)\(32\!\cdots\!98\)\( p^{2} T^{8} + \)\(83\!\cdots\!24\)\( p^{7} T^{9} + \)\(20\!\cdots\!02\)\( p^{12} T^{10} + \)\(25\!\cdots\!96\)\( p^{18} T^{11} + 29196210121257421 p^{24} T^{12} + 3228016426074 p^{30} T^{13} + 294723631 p^{36} T^{14} + 19998 p^{42} T^{15} + p^{48} T^{16} \)
23 \( 1 - 15648 T + 99012092 T^{2} - 5792005505472 T^{3} + 85374505198585162 T^{4} - \)\(63\!\cdots\!96\)\( T^{5} + \)\(18\!\cdots\!32\)\( T^{6} - \)\(24\!\cdots\!08\)\( T^{7} + \)\(15\!\cdots\!27\)\( T^{8} - \)\(24\!\cdots\!08\)\( p^{6} T^{9} + \)\(18\!\cdots\!32\)\( p^{12} T^{10} - \)\(63\!\cdots\!96\)\( p^{18} T^{11} + 85374505198585162 p^{24} T^{12} - 5792005505472 p^{30} T^{13} + 99012092 p^{36} T^{14} - 15648 p^{42} T^{15} + p^{48} T^{16} \)
29 \( ( 1 - 64734 T + 2691471109 T^{2} - 90673931971242 T^{3} + 2582526423094543896 T^{4} - 90673931971242 p^{6} T^{5} + 2691471109 p^{12} T^{6} - 64734 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
31 \( 1 - 42096 T + 2189282974 T^{2} - 67294324706592 T^{3} + 1718498578394878849 T^{4} + \)\(14\!\cdots\!48\)\( T^{5} - \)\(12\!\cdots\!22\)\( T^{6} + \)\(93\!\cdots\!80\)\( T^{7} - \)\(30\!\cdots\!60\)\( T^{8} + \)\(93\!\cdots\!80\)\( p^{6} T^{9} - \)\(12\!\cdots\!22\)\( p^{12} T^{10} + \)\(14\!\cdots\!48\)\( p^{18} T^{11} + 1718498578394878849 p^{24} T^{12} - 67294324706592 p^{30} T^{13} + 2189282974 p^{36} T^{14} - 42096 p^{42} T^{15} + p^{48} T^{16} \)
37 \( 1 - 9866 T - 4908798717 T^{2} - 34845117213094 T^{3} + 8197436045497152377 T^{4} + \)\(27\!\cdots\!36\)\( T^{5} - \)\(18\!\cdots\!38\)\( T^{6} - \)\(42\!\cdots\!24\)\( T^{7} + \)\(76\!\cdots\!42\)\( T^{8} - \)\(42\!\cdots\!24\)\( p^{6} T^{9} - \)\(18\!\cdots\!38\)\( p^{12} T^{10} + \)\(27\!\cdots\!36\)\( p^{18} T^{11} + 8197436045497152377 p^{24} T^{12} - 34845117213094 p^{30} T^{13} - 4908798717 p^{36} T^{14} - 9866 p^{42} T^{15} + p^{48} T^{16} \)
41 \( 1 - 5866747544 T^{2} + 32558293618486887772 T^{4} + \)\(98\!\cdots\!84\)\( T^{6} - \)\(48\!\cdots\!70\)\( T^{8} + \)\(98\!\cdots\!84\)\( p^{12} T^{10} + 32558293618486887772 p^{24} T^{12} - 5866747544 p^{36} T^{14} + p^{48} T^{16} \)
43 \( ( 1 - 35882 T + 8509612825 T^{2} + 179302326632422 T^{3} + 19061746338854663908 T^{4} + 179302326632422 p^{6} T^{5} + 8509612825 p^{12} T^{6} - 35882 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
47 \( 1 + 86988 T + 28747343296 T^{2} + 2281263714105024 T^{3} + \)\(41\!\cdots\!02\)\( T^{4} + \)\(39\!\cdots\!52\)\( T^{5} + \)\(43\!\cdots\!40\)\( T^{6} + \)\(50\!\cdots\!44\)\( T^{7} + \)\(43\!\cdots\!63\)\( T^{8} + \)\(50\!\cdots\!44\)\( p^{6} T^{9} + \)\(43\!\cdots\!40\)\( p^{12} T^{10} + \)\(39\!\cdots\!52\)\( p^{18} T^{11} + \)\(41\!\cdots\!02\)\( p^{24} T^{12} + 2281263714105024 p^{30} T^{13} + 28747343296 p^{36} T^{14} + 86988 p^{42} T^{15} + p^{48} T^{16} \)
53 \( 1 - 391710 T + 26778943247 T^{2} + 2630029820576766 T^{3} + \)\(12\!\cdots\!53\)\( T^{4} - \)\(28\!\cdots\!16\)\( T^{5} - \)\(27\!\cdots\!98\)\( T^{6} - \)\(21\!\cdots\!16\)\( T^{7} + \)\(12\!\cdots\!10\)\( T^{8} - \)\(21\!\cdots\!16\)\( p^{6} T^{9} - \)\(27\!\cdots\!98\)\( p^{12} T^{10} - \)\(28\!\cdots\!16\)\( p^{18} T^{11} + \)\(12\!\cdots\!53\)\( p^{24} T^{12} + 2630029820576766 p^{30} T^{13} + 26778943247 p^{36} T^{14} - 391710 p^{42} T^{15} + p^{48} T^{16} \)
59 \( 1 - 553434 T + 290046846259 T^{2} - 104018168685053238 T^{3} + \)\(36\!\cdots\!41\)\( T^{4} - \)\(10\!\cdots\!36\)\( T^{5} + \)\(27\!\cdots\!02\)\( T^{6} - \)\(64\!\cdots\!24\)\( T^{7} + \)\(13\!\cdots\!54\)\( T^{8} - \)\(64\!\cdots\!24\)\( p^{6} T^{9} + \)\(27\!\cdots\!02\)\( p^{12} T^{10} - \)\(10\!\cdots\!36\)\( p^{18} T^{11} + \)\(36\!\cdots\!41\)\( p^{24} T^{12} - 104018168685053238 p^{30} T^{13} + 290046846259 p^{36} T^{14} - 553434 p^{42} T^{15} + p^{48} T^{16} \)
61 \( 1 + 1009104 T + 617835019972 T^{2} + 280939322322772800 T^{3} + \)\(10\!\cdots\!34\)\( T^{4} + \)\(34\!\cdots\!56\)\( T^{5} + \)\(98\!\cdots\!80\)\( T^{6} + \)\(25\!\cdots\!28\)\( T^{7} + \)\(60\!\cdots\!31\)\( T^{8} + \)\(25\!\cdots\!28\)\( p^{6} T^{9} + \)\(98\!\cdots\!80\)\( p^{12} T^{10} + \)\(34\!\cdots\!56\)\( p^{18} T^{11} + \)\(10\!\cdots\!34\)\( p^{24} T^{12} + 280939322322772800 p^{30} T^{13} + 617835019972 p^{36} T^{14} + 1009104 p^{42} T^{15} + p^{48} T^{16} \)
67 \( 1 + 229762 T - 224949744729 T^{2} - 13964293996954978 T^{3} + \)\(35\!\cdots\!05\)\( T^{4} - \)\(73\!\cdots\!16\)\( T^{5} - \)\(38\!\cdots\!46\)\( T^{6} + \)\(12\!\cdots\!96\)\( T^{7} + \)\(31\!\cdots\!26\)\( T^{8} + \)\(12\!\cdots\!96\)\( p^{6} T^{9} - \)\(38\!\cdots\!46\)\( p^{12} T^{10} - \)\(73\!\cdots\!16\)\( p^{18} T^{11} + \)\(35\!\cdots\!05\)\( p^{24} T^{12} - 13964293996954978 p^{30} T^{13} - 224949744729 p^{36} T^{14} + 229762 p^{42} T^{15} + p^{48} T^{16} \)
71 \( ( 1 + 104244 T + 467419225432 T^{2} + 35722328009904828 T^{3} + \)\(86\!\cdots\!42\)\( T^{4} + 35722328009904828 p^{6} T^{5} + 467419225432 p^{12} T^{6} + 104244 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
73 \( 1 + 1249290 T + 920860106635 T^{2} + 500488400945676150 T^{3} + \)\(20\!\cdots\!41\)\( T^{4} + \)\(57\!\cdots\!24\)\( T^{5} + \)\(41\!\cdots\!02\)\( T^{6} - \)\(46\!\cdots\!84\)\( T^{7} - \)\(27\!\cdots\!82\)\( T^{8} - \)\(46\!\cdots\!84\)\( p^{6} T^{9} + \)\(41\!\cdots\!02\)\( p^{12} T^{10} + \)\(57\!\cdots\!24\)\( p^{18} T^{11} + \)\(20\!\cdots\!41\)\( p^{24} T^{12} + 500488400945676150 p^{30} T^{13} + 920860106635 p^{36} T^{14} + 1249290 p^{42} T^{15} + p^{48} T^{16} \)
79 \( 1 + 693808 T - 64434336306 T^{2} - 176593384856154400 T^{3} - \)\(85\!\cdots\!03\)\( T^{4} - \)\(46\!\cdots\!28\)\( T^{5} - \)\(95\!\cdots\!10\)\( T^{6} + \)\(11\!\cdots\!88\)\( T^{7} + \)\(10\!\cdots\!96\)\( T^{8} + \)\(11\!\cdots\!88\)\( p^{6} T^{9} - \)\(95\!\cdots\!10\)\( p^{12} T^{10} - \)\(46\!\cdots\!28\)\( p^{18} T^{11} - \)\(85\!\cdots\!03\)\( p^{24} T^{12} - 176593384856154400 p^{30} T^{13} - 64434336306 p^{36} T^{14} + 693808 p^{42} T^{15} + p^{48} T^{16} \)
83 \( 1 - 2111537278586 T^{2} + \)\(20\!\cdots\!09\)\( T^{4} - \)\(12\!\cdots\!74\)\( T^{6} + \)\(49\!\cdots\!36\)\( T^{8} - \)\(12\!\cdots\!74\)\( p^{12} T^{10} + \)\(20\!\cdots\!09\)\( p^{24} T^{12} - 2111537278586 p^{36} T^{14} + p^{48} T^{16} \)
89 \( 1 + 1414692 T + 2458060840048 T^{2} + 2533632765339697920 T^{3} + \)\(27\!\cdots\!02\)\( T^{4} + \)\(22\!\cdots\!52\)\( T^{5} + \)\(20\!\cdots\!56\)\( T^{6} + \)\(14\!\cdots\!88\)\( T^{7} + \)\(11\!\cdots\!51\)\( T^{8} + \)\(14\!\cdots\!88\)\( p^{6} T^{9} + \)\(20\!\cdots\!56\)\( p^{12} T^{10} + \)\(22\!\cdots\!52\)\( p^{18} T^{11} + \)\(27\!\cdots\!02\)\( p^{24} T^{12} + 2533632765339697920 p^{30} T^{13} + 2458060840048 p^{36} T^{14} + 1414692 p^{42} T^{15} + p^{48} T^{16} \)
97 \( 1 - 4886369036882 T^{2} + \)\(11\!\cdots\!73\)\( T^{4} - \)\(16\!\cdots\!34\)\( T^{6} + \)\(16\!\cdots\!20\)\( T^{8} - \)\(16\!\cdots\!34\)\( p^{12} T^{10} + \)\(11\!\cdots\!73\)\( p^{24} T^{12} - 4886369036882 p^{36} T^{14} + p^{48} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.21389574580403756123017196531, −3.94465296532921731932075514677, −3.44305395823054184320622474228, −3.40689461310276343446424631652, −3.33242808122474221995327403571, −3.29007433898478648829891145914, −3.17558487411633074234809689886, −2.94725774710829250650097978635, −2.91077994180661801034459583059, −2.66210759459276165913189991512, −2.39458375571346075597582544937, −2.37363659432115446750852436546, −2.24624557512753211269994683361, −2.18996415811791980342764399688, −2.15424717468343957309587729491, −1.71643712206865327308667858428, −1.66505149167892677930954589670, −1.41467819292916183012731991086, −1.19304548048622912135470727506, −1.12292226831489064370892039816, −0.826409653357325263678098614459, −0.77291856939982006494036001325, −0.57993523984438617448134779424, −0.37599541572260257325003154814, −0.21610767831528016357935567671, 0.21610767831528016357935567671, 0.37599541572260257325003154814, 0.57993523984438617448134779424, 0.77291856939982006494036001325, 0.826409653357325263678098614459, 1.12292226831489064370892039816, 1.19304548048622912135470727506, 1.41467819292916183012731991086, 1.66505149167892677930954589670, 1.71643712206865327308667858428, 2.15424717468343957309587729491, 2.18996415811791980342764399688, 2.24624557512753211269994683361, 2.37363659432115446750852436546, 2.39458375571346075597582544937, 2.66210759459276165913189991512, 2.91077994180661801034459583059, 2.94725774710829250650097978635, 3.17558487411633074234809689886, 3.29007433898478648829891145914, 3.33242808122474221995327403571, 3.40689461310276343446424631652, 3.44305395823054184320622474228, 3.94465296532921731932075514677, 4.21389574580403756123017196531

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.