Properties

Label 16-336e8-1.1-c6e8-0-1
Degree $16$
Conductor $1.624\times 10^{20}$
Sign $1$
Analytic cond. $1.27454\times 10^{15}$
Root an. cond. $8.79193$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 108·3-s + 210·5-s + 608·7-s + 6.31e3·9-s − 2.05e3·11-s − 2.26e4·15-s − 1.12e4·17-s − 2.18e4·19-s − 6.56e4·21-s − 1.55e4·23-s − 1.24e4·25-s − 2.62e5·27-s + 3.53e4·29-s + 5.10e4·31-s + 2.22e5·33-s + 1.27e5·35-s + 2.02e4·37-s − 3.87e5·43-s + 1.32e6·45-s + 5.52e4·47-s + 4.59e4·49-s + 1.21e6·51-s − 3.36e5·53-s − 4.32e5·55-s + 2.35e6·57-s + 5.60e5·59-s + 8.50e5·61-s + ⋯
L(s)  = 1  − 4·3-s + 1.67·5-s + 1.77·7-s + 26/3·9-s − 1.54·11-s − 6.71·15-s − 2.28·17-s − 3.18·19-s − 7.09·21-s − 1.27·23-s − 0.798·25-s − 13.3·27-s + 1.44·29-s + 1.71·31-s + 6.18·33-s + 2.97·35-s + 0.400·37-s − 4.87·43-s + 14.5·45-s + 0.531·47-s + 0.390·49-s + 9.15·51-s − 2.25·53-s − 2.59·55-s + 12.7·57-s + 2.72·59-s + 3.74·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(7-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{32} \cdot 3^{8} \cdot 7^{8}\right)^{s/2} \, \Gamma_{\C}(s+3)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{32} \cdot 3^{8} \cdot 7^{8}\)
Sign: $1$
Analytic conductor: \(1.27454\times 10^{15}\)
Root analytic conductor: \(8.79193\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{32} \cdot 3^{8} \cdot 7^{8} ,\ ( \ : [3]^{8} ),\ 1 )\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.05470201176\)
\(L(\frac12)\) \(\approx\) \(0.05470201176\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( ( 1 + p^{3} T + p^{5} T^{2} )^{4} \)
7 \( 1 - 608 T + 46246 p T^{2} - 407216 p^{3} T^{3} + 391627 p^{6} T^{4} - 407216 p^{9} T^{5} + 46246 p^{13} T^{6} - 608 p^{18} T^{7} + p^{24} T^{8} \)
good5 \( 1 - 42 p T + 2263 p^{2} T^{2} - 2814 p^{5} T^{3} + 2487157 p^{4} T^{4} - 3203172 p^{7} T^{5} + 2284784602 p^{6} T^{6} - 67984944072 p^{7} T^{7} + 1597655137114 p^{8} T^{8} - 67984944072 p^{13} T^{9} + 2284784602 p^{18} T^{10} - 3203172 p^{25} T^{11} + 2487157 p^{28} T^{12} - 2814 p^{35} T^{13} + 2263 p^{38} T^{14} - 42 p^{43} T^{15} + p^{48} T^{16} \)
11 \( 1 + 2058 T - 1227829 T^{2} - 7406515002 T^{3} - 3386967710903 T^{4} + 9662922109061604 T^{5} + 10529065850650150862 T^{6} - \)\(28\!\cdots\!72\)\( T^{7} - \)\(13\!\cdots\!22\)\( T^{8} - \)\(28\!\cdots\!72\)\( p^{6} T^{9} + 10529065850650150862 p^{12} T^{10} + 9662922109061604 p^{18} T^{11} - 3386967710903 p^{24} T^{12} - 7406515002 p^{30} T^{13} - 1227829 p^{36} T^{14} + 2058 p^{42} T^{15} + p^{48} T^{16} \)
13 \( 1 - 19302338 T^{2} + 180296894192257 T^{4} - \)\(11\!\cdots\!26\)\( T^{6} + \)\(63\!\cdots\!40\)\( T^{8} - \)\(11\!\cdots\!26\)\( p^{12} T^{10} + 180296894192257 p^{24} T^{12} - 19302338 p^{36} T^{14} + p^{48} T^{16} \)
17 \( 1 + 11244 T + 80398792 T^{2} + 430153612320 T^{3} + 2164758128646850 T^{4} + 4541903683526051964 T^{5} - \)\(19\!\cdots\!96\)\( T^{6} - \)\(24\!\cdots\!68\)\( T^{7} - \)\(12\!\cdots\!85\)\( T^{8} - \)\(24\!\cdots\!68\)\( p^{6} T^{9} - \)\(19\!\cdots\!96\)\( p^{12} T^{10} + 4541903683526051964 p^{18} T^{11} + 2164758128646850 p^{24} T^{12} + 430153612320 p^{30} T^{13} + 80398792 p^{36} T^{14} + 11244 p^{42} T^{15} + p^{48} T^{16} \)
19 \( 1 + 21834 T + 334034863 T^{2} + 3823723158174 T^{3} + 36160700332505293 T^{4} + \)\(31\!\cdots\!60\)\( T^{5} + \)\(26\!\cdots\!74\)\( T^{6} + \)\(20\!\cdots\!60\)\( T^{7} + \)\(15\!\cdots\!38\)\( T^{8} + \)\(20\!\cdots\!60\)\( p^{6} T^{9} + \)\(26\!\cdots\!74\)\( p^{12} T^{10} + \)\(31\!\cdots\!60\)\( p^{18} T^{11} + 36160700332505293 p^{24} T^{12} + 3823723158174 p^{30} T^{13} + 334034863 p^{36} T^{14} + 21834 p^{42} T^{15} + p^{48} T^{16} \)
23 \( 1 + 15504 T - 59161180 T^{2} - 2401961274912 T^{3} - 24147460491672806 T^{4} - \)\(26\!\cdots\!60\)\( T^{5} - \)\(29\!\cdots\!32\)\( T^{6} + \)\(21\!\cdots\!72\)\( p T^{7} + \)\(78\!\cdots\!75\)\( T^{8} + \)\(21\!\cdots\!72\)\( p^{7} T^{9} - \)\(29\!\cdots\!32\)\( p^{12} T^{10} - \)\(26\!\cdots\!60\)\( p^{18} T^{11} - 24147460491672806 p^{24} T^{12} - 2401961274912 p^{30} T^{13} - 59161180 p^{36} T^{14} + 15504 p^{42} T^{15} + p^{48} T^{16} \)
29 \( ( 1 - 17658 T + 1822197325 T^{2} - 25912698371262 T^{3} + 1521927334843462824 T^{4} - 25912698371262 p^{6} T^{5} + 1822197325 p^{12} T^{6} - 17658 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
31 \( 1 - 51060 T + 2333720014 T^{2} - 74786500242840 T^{3} + 1960005684273765769 T^{4} - \)\(19\!\cdots\!28\)\( T^{5} - \)\(12\!\cdots\!18\)\( T^{6} + \)\(67\!\cdots\!48\)\( T^{7} - \)\(25\!\cdots\!56\)\( T^{8} + \)\(67\!\cdots\!48\)\( p^{6} T^{9} - \)\(12\!\cdots\!18\)\( p^{12} T^{10} - \)\(19\!\cdots\!28\)\( p^{18} T^{11} + 1960005684273765769 p^{24} T^{12} - 74786500242840 p^{30} T^{13} + 2333720014 p^{36} T^{14} - 51060 p^{42} T^{15} + p^{48} T^{16} \)
37 \( 1 - 20282 T + 677653755 T^{2} - 1668594165814 T^{3} - 4995910852509553975 T^{4} + \)\(21\!\cdots\!32\)\( T^{5} - \)\(19\!\cdots\!82\)\( T^{6} - \)\(28\!\cdots\!56\)\( T^{7} - \)\(35\!\cdots\!42\)\( T^{8} - \)\(28\!\cdots\!56\)\( p^{6} T^{9} - \)\(19\!\cdots\!82\)\( p^{12} T^{10} + \)\(21\!\cdots\!32\)\( p^{18} T^{11} - 4995910852509553975 p^{24} T^{12} - 1668594165814 p^{30} T^{13} + 677653755 p^{36} T^{14} - 20282 p^{42} T^{15} + p^{48} T^{16} \)
41 \( 1 - 776685208 p T^{2} + \)\(46\!\cdots\!40\)\( T^{4} - \)\(40\!\cdots\!92\)\( T^{6} + \)\(23\!\cdots\!74\)\( T^{8} - \)\(40\!\cdots\!92\)\( p^{12} T^{10} + \)\(46\!\cdots\!40\)\( p^{24} T^{12} - 776685208 p^{37} T^{14} + p^{48} T^{16} \)
43 \( ( 1 + 193906 T + 33812347033 T^{2} + 3788015706390418 T^{3} + \)\(34\!\cdots\!60\)\( T^{4} + 3788015706390418 p^{6} T^{5} + 33812347033 p^{12} T^{6} + 193906 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
47 \( 1 - 55212 T + 39123235288 T^{2} - 2103969958291680 T^{3} + \)\(89\!\cdots\!62\)\( T^{4} - \)\(43\!\cdots\!76\)\( T^{5} + \)\(14\!\cdots\!96\)\( T^{6} - \)\(62\!\cdots\!84\)\( T^{7} + \)\(17\!\cdots\!87\)\( T^{8} - \)\(62\!\cdots\!84\)\( p^{6} T^{9} + \)\(14\!\cdots\!96\)\( p^{12} T^{10} - \)\(43\!\cdots\!76\)\( p^{18} T^{11} + \)\(89\!\cdots\!62\)\( p^{24} T^{12} - 2103969958291680 p^{30} T^{13} + 39123235288 p^{36} T^{14} - 55212 p^{42} T^{15} + p^{48} T^{16} \)
53 \( 1 + 336174 T - 12007524289 T^{2} - 5190536822683134 T^{3} + \)\(31\!\cdots\!65\)\( T^{4} + \)\(41\!\cdots\!32\)\( T^{5} - \)\(65\!\cdots\!78\)\( T^{6} + \)\(10\!\cdots\!60\)\( T^{7} + \)\(29\!\cdots\!10\)\( T^{8} + \)\(10\!\cdots\!60\)\( p^{6} T^{9} - \)\(65\!\cdots\!78\)\( p^{12} T^{10} + \)\(41\!\cdots\!32\)\( p^{18} T^{11} + \)\(31\!\cdots\!65\)\( p^{24} T^{12} - 5190536822683134 p^{30} T^{13} - 12007524289 p^{36} T^{14} + 336174 p^{42} T^{15} + p^{48} T^{16} \)
59 \( 1 - 560454 T + 235422959347 T^{2} - 73262582735044650 T^{3} + \)\(18\!\cdots\!57\)\( T^{4} - \)\(33\!\cdots\!52\)\( T^{5} + \)\(49\!\cdots\!14\)\( T^{6} - \)\(54\!\cdots\!32\)\( T^{7} + \)\(70\!\cdots\!22\)\( T^{8} - \)\(54\!\cdots\!32\)\( p^{6} T^{9} + \)\(49\!\cdots\!14\)\( p^{12} T^{10} - \)\(33\!\cdots\!52\)\( p^{18} T^{11} + \)\(18\!\cdots\!57\)\( p^{24} T^{12} - 73262582735044650 p^{30} T^{13} + 235422959347 p^{36} T^{14} - 560454 p^{42} T^{15} + p^{48} T^{16} \)
61 \( 1 - 850728 T + 507030047380 T^{2} - 226109894199149856 T^{3} + \)\(86\!\cdots\!42\)\( T^{4} - \)\(28\!\cdots\!64\)\( T^{5} + \)\(84\!\cdots\!76\)\( T^{6} - \)\(22\!\cdots\!20\)\( T^{7} + \)\(52\!\cdots\!87\)\( T^{8} - \)\(22\!\cdots\!20\)\( p^{6} T^{9} + \)\(84\!\cdots\!76\)\( p^{12} T^{10} - \)\(28\!\cdots\!64\)\( p^{18} T^{11} + \)\(86\!\cdots\!42\)\( p^{24} T^{12} - 226109894199149856 p^{30} T^{13} + 507030047380 p^{36} T^{14} - 850728 p^{42} T^{15} + p^{48} T^{16} \)
67 \( 1 - 947882 T + 318595843623 T^{2} - 72319663255205590 T^{3} + \)\(28\!\cdots\!57\)\( T^{4} - \)\(62\!\cdots\!12\)\( T^{5} - \)\(10\!\cdots\!02\)\( T^{6} + \)\(49\!\cdots\!96\)\( T^{7} - \)\(68\!\cdots\!70\)\( T^{8} + \)\(49\!\cdots\!96\)\( p^{6} T^{9} - \)\(10\!\cdots\!02\)\( p^{12} T^{10} - \)\(62\!\cdots\!12\)\( p^{18} T^{11} + \)\(28\!\cdots\!57\)\( p^{24} T^{12} - 72319663255205590 p^{30} T^{13} + 318595843623 p^{36} T^{14} - 947882 p^{42} T^{15} + p^{48} T^{16} \)
71 \( ( 1 + 73596 T + 148848570688 T^{2} - 28477618711517772 T^{3} + \)\(10\!\cdots\!26\)\( T^{4} - 28477618711517772 p^{6} T^{5} + 148848570688 p^{12} T^{6} + 73596 p^{18} T^{7} + p^{24} T^{8} )^{2} \)
73 \( 1 + 533034 T + 690700987771 T^{2} + 317684305006699446 T^{3} + \)\(26\!\cdots\!37\)\( T^{4} + \)\(10\!\cdots\!00\)\( T^{5} + \)\(65\!\cdots\!58\)\( T^{6} + \)\(22\!\cdots\!48\)\( T^{7} + \)\(11\!\cdots\!38\)\( T^{8} + \)\(22\!\cdots\!48\)\( p^{6} T^{9} + \)\(65\!\cdots\!58\)\( p^{12} T^{10} + \)\(10\!\cdots\!00\)\( p^{18} T^{11} + \)\(26\!\cdots\!37\)\( p^{24} T^{12} + 317684305006699446 p^{30} T^{13} + 690700987771 p^{36} T^{14} + 533034 p^{42} T^{15} + p^{48} T^{16} \)
79 \( 1 - 6260 T - 784672265154 T^{2} + 41346838804133528 T^{3} + \)\(35\!\cdots\!21\)\( T^{4} - \)\(20\!\cdots\!00\)\( T^{5} - \)\(11\!\cdots\!26\)\( T^{6} + \)\(23\!\cdots\!92\)\( T^{7} + \)\(30\!\cdots\!12\)\( T^{8} + \)\(23\!\cdots\!92\)\( p^{6} T^{9} - \)\(11\!\cdots\!26\)\( p^{12} T^{10} - \)\(20\!\cdots\!00\)\( p^{18} T^{11} + \)\(35\!\cdots\!21\)\( p^{24} T^{12} + 41346838804133528 p^{30} T^{13} - 784672265154 p^{36} T^{14} - 6260 p^{42} T^{15} + p^{48} T^{16} \)
83 \( 1 - 597905785082 T^{2} + \)\(27\!\cdots\!37\)\( T^{4} - \)\(10\!\cdots\!06\)\( T^{6} + \)\(44\!\cdots\!24\)\( T^{8} - \)\(10\!\cdots\!06\)\( p^{12} T^{10} + \)\(27\!\cdots\!37\)\( p^{24} T^{12} - 597905785082 p^{36} T^{14} + p^{48} T^{16} \)
89 \( 1 - 413460 T + 9936525424 T^{2} + 19451859028104960 T^{3} - \)\(28\!\cdots\!82\)\( T^{4} + \)\(13\!\cdots\!60\)\( T^{5} + \)\(10\!\cdots\!84\)\( T^{6} - \)\(31\!\cdots\!40\)\( T^{7} + \)\(37\!\cdots\!27\)\( T^{8} - \)\(31\!\cdots\!40\)\( p^{6} T^{9} + \)\(10\!\cdots\!84\)\( p^{12} T^{10} + \)\(13\!\cdots\!60\)\( p^{18} T^{11} - \)\(28\!\cdots\!82\)\( p^{24} T^{12} + 19451859028104960 p^{30} T^{13} + 9936525424 p^{36} T^{14} - 413460 p^{42} T^{15} + p^{48} T^{16} \)
97 \( 1 + 825365486446 T^{2} + \)\(28\!\cdots\!33\)\( T^{4} + \)\(16\!\cdots\!74\)\( T^{6} + \)\(30\!\cdots\!88\)\( T^{8} + \)\(16\!\cdots\!74\)\( p^{12} T^{10} + \)\(28\!\cdots\!33\)\( p^{24} T^{12} + 825365486446 p^{36} T^{14} + p^{48} T^{16} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.43769550986084484423201756962, −4.04600775760174805029596375937, −3.73473392974416623218931195310, −3.67813880682703442486696273127, −3.64649101105955930103242814574, −3.43230258321002983905118604106, −3.15307979587169245163951080025, −2.73788992772056106413714003463, −2.73729738310347396424375747746, −2.57366831971785191194307074325, −2.32410193358477134266941220407, −1.97000724635430372484084828460, −1.96977008273411030581430529070, −1.89495188298140719323778105020, −1.86181309665869193692649625954, −1.82967986548234150672358251090, −1.79348038192828929090694387275, −1.23332124115431659996854890873, −1.02655098520065039107888128647, −0.72134907398649632509769308732, −0.69940839274835253977069717131, −0.69364944797848598183906588812, −0.45346445064374010231728096423, −0.17139298942582227151914372636, −0.04204054354827005875215397158, 0.04204054354827005875215397158, 0.17139298942582227151914372636, 0.45346445064374010231728096423, 0.69364944797848598183906588812, 0.69940839274835253977069717131, 0.72134907398649632509769308732, 1.02655098520065039107888128647, 1.23332124115431659996854890873, 1.79348038192828929090694387275, 1.82967986548234150672358251090, 1.86181309665869193692649625954, 1.89495188298140719323778105020, 1.96977008273411030581430529070, 1.97000724635430372484084828460, 2.32410193358477134266941220407, 2.57366831971785191194307074325, 2.73729738310347396424375747746, 2.73788992772056106413714003463, 3.15307979587169245163951080025, 3.43230258321002983905118604106, 3.64649101105955930103242814574, 3.67813880682703442486696273127, 3.73473392974416623218931195310, 4.04600775760174805029596375937, 4.43769550986084484423201756962

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.